cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A025611 Numbers of form 2^i*9^j, with i, j >= 0.

Original entry on oeis.org

1, 2, 4, 8, 9, 16, 18, 32, 36, 64, 72, 81, 128, 144, 162, 256, 288, 324, 512, 576, 648, 729, 1024, 1152, 1296, 1458, 2048, 2304, 2592, 2916, 4096, 4608, 5184, 5832, 6561, 8192, 9216, 10368, 11664, 13122, 16384, 18432, 20736, 23328, 26244, 32768, 36864, 41472
Offset: 1

Views

Author

Keywords

Crossrefs

Subsequence of A003586.

Programs

  • Maple
    N:= 10^5: # for terms <= N
    sort([seq(seq(2^i*9^j,i=0..ilog2(N/9^j)),j=0..floor(log[9](N)))]); # Robert Israel, Mar 23 2020
  • Mathematica
    Take[Union[2^First[#] 9^Last[#]&/@Tuples[Range[0,20],{2}]],50] (* Harvey P. Dale, May 26 2011 *)
    n = 10^5; Flatten[Table[2^i*9^j, {i, 0, Log[2, n]}, {j, 0, Log[9, n/2^i]}]] // Sort (* Amiram Eldar, Sep 24 2020 *)

Formula

Sum_{n>=1} 1/a(n) = (2*9)/((2-1)*(9-1)) = 9/4. - Amiram Eldar, Sep 24 2020
a(n) ~ exp(sqrt(2*log(2)*log(9)*n)) / sqrt(18). - Vaclav Kotesovec, Sep 24 2020
a(n) = 2^A025638(n) * 9^A025678(n). - R. J. Mathar, Jul 06 2025