cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A107988 Numbers of the form (4^i)*(11^j), with i, j >= 0.

Original entry on oeis.org

1, 4, 11, 16, 44, 64, 121, 176, 256, 484, 704, 1024, 1331, 1936, 2816, 4096, 5324, 7744, 11264, 14641, 16384, 21296, 30976, 45056, 58564, 65536, 85184, 123904, 161051, 180224, 234256, 262144, 340736, 495616, 644204, 720896, 937024, 1048576
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Jun 12 2005

Keywords

Crossrefs

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a107988 n = a107988_list !! (n-1)
    a107988_list = f $ singleton (1,0,0) where
       f s = y : f (insert (4 * y, i + 1, j) $ insert (11 * y, i, j + 1) s')
             where ((y, i, j), s') = deleteFindMin s
    -- Reinhard Zumkeller, May 15 2015
  • Mathematica
    n = 10^6; Flatten[Table[4^i*11^j, {i, 0, Log[4, n]}, {j, 0, Log[11, n/4^i]}]] // Sort (* Amiram Eldar, Sep 24 2020 *)

Formula

Sum_{n>=1} 1/a(n) = (4*11)/((4-1)*(11-1)) = 22/15. - Amiram Eldar, Sep 24 2020
a(n) ~ exp(sqrt(2*log(4)*log(11)*n)) / sqrt(44). - Vaclav Kotesovec, Sep 24 2020

A025626 Numbers of form 6^i*7^j, with i, j >= 0.

Original entry on oeis.org

1, 6, 7, 36, 42, 49, 216, 252, 294, 343, 1296, 1512, 1764, 2058, 2401, 7776, 9072, 10584, 12348, 14406, 16807, 46656, 54432, 63504, 74088, 86436, 100842, 117649, 279936, 326592, 381024, 444528, 518616, 605052, 705894, 823543, 1679616, 1959552
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    n = 10^6; Flatten[Table[6^i*7^j, {i, 0, Log[6, n]}, {j, 0, Log[7, n/6^i]}]] // Sort (* Amiram Eldar, Sep 25 2020 *)

Formula

Sum_{n>=1} 1/a(n) = (6*7)/((6-1)*(7-1)) = 7/5. - Amiram Eldar, Sep 25 2020
a(n) ~ exp(sqrt(2*log(6)*log(7)*n)) / sqrt(42). - Vaclav Kotesovec, Sep 25 2020
a(n) = 6^A025660(n) * 7^A025668(n). - R. J. Mathar, Jul 06 2025

A107462 Numbers of the form (4^i)*(13^j), with i, j >= 0.

Original entry on oeis.org

1, 4, 13, 16, 52, 64, 169, 208, 256, 676, 832, 1024, 2197, 2704, 3328, 4096, 8788, 10816, 13312, 16384, 28561, 35152, 43264, 53248, 65536, 114244, 140608, 173056, 212992, 262144, 371293, 456976, 562432, 692224, 851968, 1048576, 1485172
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Jun 09 2005

Keywords

Crossrefs

Programs

  • Mathematica
    n = 10^6; Flatten[Table[4^i*13^j, {i, 0, Log[4, n]}, {j, 0, Log[13, n/4^i]}]] // Sort (* Amiram Eldar, Sep 24 2020 *)

Formula

Sum_{n>=1} 1/a(n) = (4*13)/((4-1)*(13-1)) = 13/9. - Amiram Eldar, Sep 24 2020
a(n) ~ exp(sqrt(2*log(4)*log(13)*n)) / sqrt(52). - Vaclav Kotesovec, Sep 24 2020

A025648 Exponent of 4 (value of i) in n-th number of form 4^i*7^j.

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 3, 2, 1, 4, 0, 3, 2, 5, 1, 4, 0, 3, 6, 2, 5, 1, 4, 7, 0, 3, 6, 2, 5, 8, 1, 4, 7, 0, 3, 6, 9, 2, 5, 8, 1, 4, 7, 0, 10, 3, 6, 9, 2, 5, 8, 1, 11, 4, 7, 0, 10, 3, 6, 9, 2, 12, 5, 8, 1, 11, 4, 7, 0, 10, 3, 13, 6, 9, 2, 12, 5, 8, 1, 11, 4, 14, 7, 0, 10, 3, 13, 6, 9, 2, 12, 5, 15, 8, 1, 11, 4, 14, 7
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A025619.

A025666 Exponent of 7 (value of j) in n-th number of form 4^i*7^j.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 0, 1, 2, 0, 3, 1, 2, 0, 3, 1, 4, 2, 0, 3, 1, 4, 2, 0, 5, 3, 1, 4, 2, 0, 5, 3, 1, 6, 4, 2, 0, 5, 3, 1, 6, 4, 2, 7, 0, 5, 3, 1, 6, 4, 2, 7, 0, 5, 3, 8, 1, 6, 4, 2, 7, 0, 5, 3, 8, 1, 6, 4, 9, 2, 7, 0, 5, 3, 8, 1, 6, 4, 9, 2, 7, 0, 5, 10, 3, 8, 1, 6, 4, 9, 2, 7, 0, 5, 10, 3, 8, 1, 6, 11, 4, 9, 2, 7, 0, 5
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    N:= 10^10: # to consider all terms with 4^i*7^j<=N
    S:= {seq(seq(4^i*7^j, j=0..floor(log[7](N/4^i))),i=0..floor(log[4](N)))}:
    map(padic:-ordp, sort(convert(S,list)),7); # Robert Israel, Aug 11 2019

Formula

4^A025648(n)*7^a(n) = A025619(n). - Robert Israel, Aug 11 2019
Showing 1-5 of 5 results.