cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A025620 Numbers of the form 4^i * 9^j, with i, j >= 0.

Original entry on oeis.org

1, 4, 9, 16, 36, 64, 81, 144, 256, 324, 576, 729, 1024, 1296, 2304, 2916, 4096, 5184, 6561, 9216, 11664, 16384, 20736, 26244, 36864, 46656, 59049, 65536, 82944, 104976, 147456, 186624, 236196, 262144, 331776, 419904, 531441, 589824, 746496, 944784
Offset: 1

Views

Author

Keywords

Comments

Numbers of the form 2^(2*i) * 3^(2*j) or 3-smooth squares: intersection of A003586 and A000290; A001221(a(n)) <= 2; A001222(a(n)) is even; A006530(a(n)) <= 3. - Reinhard Zumkeller, May 16 2015
Closed under multiplication. - Klaus Purath, Oct 06 2023

Crossrefs

Cf. A003586, A000290, A001221, A001222, A006530, subsequence of A036667.

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a025620 n = a025620_list !! (n-1)
    a025620_list = f $ singleton 1 where
       f s = y : f (insert (4 * y) $ insert (9 * y) s')
                   where (y, s') = deleteFindMin s
    -- Reinhard Zumkeller, May 16 2015
    
  • Mathematica
    n = 10^6; Flatten[Table[4^i*9^j, {i, 0, Log[4, n]}, {j, 0, Log[9, n/4^i]}]] // Sort (* Amiram Eldar, Sep 24 2020 *)
  • PARI
    list(lim)=my(v=List(), N); for(n=0, logint(lim\=1, 9), N=9^n; while(N<=lim, listput(v, N); N<<=2)); Set(v) \\ Charles R Greathouse IV, Jan 10 2018

Formula

Sum_{n>=1} 1/a(n) = (4*9)/((4-1)*(9-1)) = 3/2. - Amiram Eldar, Sep 24 2020
a(n) ~ exp(sqrt(8*log(2)*log(3)*n)) / 6 . - Vaclav Kotesovec, Sep 24 2020
a(n) = A003586(n)^2 = 4^A022328(n) * 9^A022329(n). - R. J. Mathar, Jul 06 2025