cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A025626 Numbers of form 6^i*7^j, with i, j >= 0.

Original entry on oeis.org

1, 6, 7, 36, 42, 49, 216, 252, 294, 343, 1296, 1512, 1764, 2058, 2401, 7776, 9072, 10584, 12348, 14406, 16807, 46656, 54432, 63504, 74088, 86436, 100842, 117649, 279936, 326592, 381024, 444528, 518616, 605052, 705894, 823543, 1679616, 1959552
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    n = 10^6; Flatten[Table[6^i*7^j, {i, 0, Log[6, n]}, {j, 0, Log[7, n/6^i]}]] // Sort (* Amiram Eldar, Sep 25 2020 *)

Formula

Sum_{n>=1} 1/a(n) = (6*7)/((6-1)*(7-1)) = 7/5. - Amiram Eldar, Sep 25 2020
a(n) ~ exp(sqrt(2*log(6)*log(7)*n)) / sqrt(42). - Vaclav Kotesovec, Sep 25 2020
a(n) = 6^A025660(n) * 7^A025668(n). - R. J. Mathar, Jul 06 2025

A108238 Numbers of the form (7^i)*(12^j), with i, j >= 0.

Original entry on oeis.org

1, 7, 12, 49, 84, 144, 343, 588, 1008, 1728, 2401, 4116, 7056, 12096, 16807, 20736, 28812, 49392, 84672, 117649, 145152, 201684, 248832, 345744, 592704, 823543, 1016064, 1411788, 1741824, 2420208, 2985984, 4148928, 5764801, 7112448
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Jun 17 2005

Keywords

Crossrefs

Programs

  • Mathematica
    Take[7^#[[1]]*12^#[[2]]&/@Tuples[Range[0,10],2]//Union,40] (* Harvey P. Dale, Mar 05 2017 *)
    n = 10^6; Flatten[Table[7^i*12^j, {i, 0, Log[7, n]}, {j, 0, Log[12, n/7^i]}]] // Sort (* Amiram Eldar, Sep 26 2020 *)
  • Python
    from sympy import integer_log
    def A108238(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(integer_log(x//12**i,7)[0]+1 for i in range(integer_log(x,12)[0]+1))
        return bisection(f,n,n) # Chai Wah Wu, Mar 26 2025

Formula

Sum_{n>=1} 1/a(n) = (7*12)/((7-1)*(12-1)) = 14/11. - Amiram Eldar, Sep 26 2020
a(n) ~ exp(sqrt(2*log(7)*log(12)*n)) / sqrt(84). - Vaclav Kotesovec, Sep 26 2020

A025670 Exponent of 7 (value of i) in n-th number of form 7^i*9^j.

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 3, 2, 1, 0, 4, 3, 2, 1, 0, 5, 4, 3, 2, 1, 0, 6, 5, 4, 3, 2, 1, 0, 7, 6, 5, 4, 3, 2, 1, 0, 8, 7, 6, 5, 4, 3, 2, 1, 9, 0, 8, 7, 6, 5, 4, 3, 2, 10, 1, 9, 0, 8, 7, 6, 5, 4, 3, 11, 2, 10, 1, 9, 0, 8, 7, 6, 5, 4, 12, 3, 11, 2, 10, 1, 9, 0, 8, 7, 6, 5, 13, 4, 12, 3, 11, 2, 10, 1, 9, 0, 8, 7, 6, 14, 5
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A025631.

A025681 Exponent of 9 (value of j) in n-th number of form 7^i*9^j.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 8, 1, 2, 3, 4, 5, 6, 7, 0, 8, 1, 9, 2, 3, 4, 5, 6, 7, 0, 8, 1, 9, 2, 10, 3, 4, 5, 6, 7, 0, 8, 1, 9, 2, 10, 3, 11, 4, 5, 6, 7, 0, 8, 1, 9, 2, 10, 3, 11, 4, 12, 5, 6, 7, 0, 8, 1, 9, 2
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A025631.
Showing 1-4 of 4 results.