A025635 Numbers of form 9^i*10^j, with i, j >= 0.
1, 9, 10, 81, 90, 100, 729, 810, 900, 1000, 6561, 7290, 8100, 9000, 10000, 59049, 65610, 72900, 81000, 90000, 100000, 531441, 590490, 656100, 729000, 810000, 900000, 1000000, 4782969, 5314410, 5904900, 6561000, 7290000, 8100000, 9000000
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Haskell
import Data.Set (singleton, deleteFindMin, insert) a025635 n = a025635_list !! (n-1) a025635_list = f $ singleton (1,0,0) where f s = y : f (insert (9 * y, i + 1, j) $ insert (10 * y, i, j + 1) s') where ((y, i, j), s') = deleteFindMin s -- Reinhard Zumkeller, May 15 2015
-
Mathematica
With[{max = 10^7}, Flatten[Table[9^i*10^j, {i, 0, Log[9, max]}, {j, 0, Log[10, max/9^i]}]] // Sort] (* Amiram Eldar, Mar 29 2025 *)
-
PARI
list(lim)=my(v=List(), N); for(n=0, logint(lim\=1, 10), N=10^n; while(N<=lim, listput(v, N); N*=9)); Set(v) \\ Charles R Greathouse IV, Jan 10 2018
-
Python
from sympy import integer_log def A025635(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return n+x-sum(integer_log(x//10**i,9)[0]+1 for i in range(integer_log(x,10)[0]+1)) return bisection(f,n,n) # Chai Wah Wu, Mar 25 2025
Formula
Sum_{n>=1} 1/a(n) = 5/4. - Amiram Eldar, Mar 29 2025