cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A025611 Numbers of form 2^i*9^j, with i, j >= 0.

Original entry on oeis.org

1, 2, 4, 8, 9, 16, 18, 32, 36, 64, 72, 81, 128, 144, 162, 256, 288, 324, 512, 576, 648, 729, 1024, 1152, 1296, 1458, 2048, 2304, 2592, 2916, 4096, 4608, 5184, 5832, 6561, 8192, 9216, 10368, 11664, 13122, 16384, 18432, 20736, 23328, 26244, 32768, 36864, 41472
Offset: 1

Views

Author

Keywords

Crossrefs

Subsequence of A003586.

Programs

  • Maple
    N:= 10^5: # for terms <= N
    sort([seq(seq(2^i*9^j,i=0..ilog2(N/9^j)),j=0..floor(log[9](N)))]); # Robert Israel, Mar 23 2020
  • Mathematica
    Take[Union[2^First[#] 9^Last[#]&/@Tuples[Range[0,20],{2}]],50] (* Harvey P. Dale, May 26 2011 *)
    n = 10^5; Flatten[Table[2^i*9^j, {i, 0, Log[2, n]}, {j, 0, Log[9, n/2^i]}]] // Sort (* Amiram Eldar, Sep 24 2020 *)

Formula

Sum_{n>=1} 1/a(n) = (2*9)/((2-1)*(9-1)) = 9/4. - Amiram Eldar, Sep 24 2020
a(n) ~ exp(sqrt(2*log(2)*log(9)*n)) / sqrt(18). - Vaclav Kotesovec, Sep 24 2020
a(n) = 2^A025638(n) * 9^A025678(n). - R. J. Mathar, Jul 06 2025

A025694 Index of 2^n within sequence of numbers of form 2^i * 9^j.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 10, 13, 16, 19, 23, 27, 31, 36, 41, 46, 52, 58, 64, 70, 77, 84, 91, 99, 107, 115, 124, 133, 142, 152, 162, 172, 183, 194, 205, 217, 229, 241, 253, 266, 279, 292, 306, 320, 334, 349, 364, 379, 395, 411, 427, 444, 461, 478, 496, 514, 532, 550, 569, 588, 607
Offset: 0

Views

Author

Keywords

Comments

Positions of zeros in A025678. - R. J. Mathar, Jul 06 2025

Programs

  • Maple
    f:= proc(n) local j,s,t;
          t:= n;
          for j from 1 do
             s:= ilog2(9^j);
             if s >= n then return t fi;
             t:= t + n-1-s;
          od
    end proc:
    map(f, [$1..100]); # Robert Israel, Dec 09 2016
  • PARI
    a(n)=my(N=1); n+1+sum(i=1, n, logint(N<<=1, 9)); \\ Charles R Greathouse IV, Jan 11 2018
    
  • PARI
    first(n)=my(s, N=1/2); vector(n+1, i, s+=logint(N<<=1, 9)+1) \\ Charles R Greathouse IV, Jan 11 2018

Extensions

Offset corrected by Charles R Greathouse IV, Jan 11 2018
Showing 1-2 of 2 results.