cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A025632 Numbers of form 7^i*10^j, with i, j >= 0.

Original entry on oeis.org

1, 7, 10, 49, 70, 100, 343, 490, 700, 1000, 2401, 3430, 4900, 7000, 10000, 16807, 24010, 34300, 49000, 70000, 100000, 117649, 168070, 240100, 343000, 490000, 700000, 823543, 1000000, 1176490, 1680700, 2401000, 3430000, 4900000, 5764801, 7000000
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a025632 n = a025632_list !! (n-1)
    a025632_list = f $ singleton (1,0,0) where
       f s = y : f (insert (7 * y, i + 1, j) $ insert (10 * y, i, j + 1) s')
             where ((y, i, j), s') = deleteFindMin s
    -- Reinhard Zumkeller, May 15 2015
    
  • Mathematica
    n = 10^6; Flatten[Table[7^i*10^j, {i, 0, Log[7, n]}, {j, 0, Log10[n/7^i]}]] // Sort (* Amiram Eldar, Sep 25 2020 *)
  • PARI
    list(lim)=my(v=List(), N); for(n=0, logint(lim\=1, 10), N=10^n; while(N<=lim, listput(v, N); N*=7)); Set(v) \\ Charles R Greathouse IV, Jan 10 2018

Formula

Sum_{n>=1} 1/a(n) = (7*10)/((7-1)*(10-1)) = 35/27. - Amiram Eldar, Sep 25 2020
a(n) ~ exp(sqrt(2*log(7)*log(10)*n)) / sqrt(70). - Vaclav Kotesovec, Sep 25 2020
a(n) = 7^A025671(n) * 10^A025689(n). - R. J. Mathar, Jul 06 2025

A025727 Index of 7^n within sequence of numbers of form 7^i*10^j.

Original entry on oeis.org

1, 2, 4, 7, 11, 16, 22, 28, 35, 43, 52, 62, 73, 84, 96, 109, 123, 138, 154, 171, 188, 206, 225, 245, 266, 288, 310, 333, 357, 382, 408, 435, 463, 491, 520, 550, 581, 613, 646, 679, 713, 748, 784, 821, 859, 898, 937, 977, 1018, 1060, 1103, 1147, 1191, 1236, 1282, 1329
Offset: 1

Views

Author

Keywords

Comments

Positions of zeros in A025689. - R. J. Mathar, Jul 06 2025
Showing 1-2 of 2 results.