cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A025749 4th-order Patalan numbers (generalization of Catalan numbers).

Original entry on oeis.org

1, 1, 6, 56, 616, 7392, 93632, 1230592, 16612992, 228890112, 3204461568, 45445091328, 651379642368, 9419951751168, 137262154088448, 2013178259963904, 29694379334467584, 440175505428578304, 6553724191936610304, 97960930026841964544, 1469413950402629468160
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := (4^(n-1)*Sum[ Binomial[n+k-1, n-1]*Sum[ Binomial[j, n-3*k+2*j-1] * 4^(j-k) * Binomial[k, j] * 3^(-n+3*k-j+1) * 2^(n-3*k+j-1) * (-1)^(n-3*k+2*j-1), {j, 0, k}], {k, 1, n-1}])/n; a[0] = a[1] = 1; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Mar 05 2013, after Vladimir Kruchinin *)
    a[n_] := 16^(n-1) * Pochhammer[3/4, n-1]/n!; a[0] = 1; Array[a, 21, 0] (* Amiram Eldar, Aug 20 2025 *)
  • Maxima
    a(n):=(4^(n-1)*sum(binomial(n+k-1,n-1)*sum(binomial(j,n-3*k+2*j-1)*4^(j-k)*binomial(k,j)*3^(-n+3*k-j+1)*2^(n-3*k+j-1)*(-1)^(n-3*k+2*j-1),j,0,k),k,1,n-1))/n; /* Vladimir Kruchinin, Apr 01 2011 */

Formula

a(n) = 2^(n-1) * A048779(n), n > 1.
From Wolfdieter Lang: (Start)
G.f.: (5-(1-16*x)^(1/4))/4.
a(n) = 4^(n-1)*3*A034176(n-1)/n!, n >= 2, where 3*A034176(n-1) = (4*n-5)(!^4) = Product_{j=2..n} (4*j - 5). (End)
a(n) = (4^(n-1) * Sum_{k=1..n-1} binomial(n+k-1,n-1) * Sum_{j=0..k} binomial(j,n-3*k+2*j-1)*4^(j-k)*binomial(k,j)*3^(-n+3*k-j+1)*2^(n-3*k+j-1)*(-1)^(n-3*k+2*j-1))/n. - Vladimir Kruchinin, Apr 01 2011
n*a(n) + 4*(-4*n+5)*a(n-1) = 0. - R. J. Mathar, Apr 05 2018
a(n) ~ 16^(n-1) / (Gamma(3/4) * n^(5/4)). - Amiram Eldar, Aug 20 2025