A026003 a(n) = T([n/2],[(n+1)/2]), where T = Delannoy triangle (A008288).
1, 1, 3, 5, 13, 25, 63, 129, 321, 681, 1683, 3653, 8989, 19825, 48639, 108545, 265729, 598417, 1462563, 3317445, 8097453, 18474633, 45046719, 103274625, 251595969, 579168825, 1409933619, 3256957317, 7923848253, 18359266785, 44642381823
Offset: 0
References
- L. Ericksen, Lattice path combinatorics for multiple product identities, J. Stat. Plan. Infer. 140 (2010) 2213-2226 doi:10.1016/j.jspi.2010.01.017
- Lin Yang and S.-L. Yang, The parametric Pascal rhombus. Fib. Q., 57:4 (2019), 337-346.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Axel Bacher, Improving the Florentine algorithms: recovering algorithms for Motzkin and Schröder paths, arXiv:1802.06030 [cs.DS], 2018.
- Paul Barry, The Central Coefficients of a Family of Pascal-like Triangles and Colored Lattice Paths, J. Int. Seq., Vol. 22 (2019), Article 19.1.3.
- Paul Barry, Notes on Riordan arrays and lattice paths, arXiv:2504.09719 [math.CO], 2025. See pp. 20, 29.
- Li-Hua Deng, Eva Y. P. Deng and Louis W. Shapiro,The Riordan Group and Symmetric Lattice Paths, arXiv:0906.1844v1 [math.CO], 2009.
Programs
-
Maple
A026003 :=n -> add(binomial(n-k, k) * binomial(n-2*k, floor((n-2*k)/2)), k=0..floor(n/2)): seq(A026003(n), n=0..30); # Johannes W. Meijer, Jul 15 2013
-
Mathematica
CoefficientList[Series[(Sqrt[(x^2-2*x-1)/(x^2+2*x-1)]-1)/2/x, {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 13 2014 *)
Formula
G.f.: (sqrt((x^2-2*x-1)/(x^2+2*x-1))-1)/2/x. - Vladeta Jovovic, Apr 27 2003
a(n) = Sum_{k=0..floor(n/2)} C(n-k, k)*C(n-2k, floor((n-2k)/2)). - Paul Barry, Jul 30 2005
From Paul Barry, Mar 01 2010: (Start)
G.f.: 1/(1-x-2x^2/(1-x^2/(1-2x^2/(1-x^2/(1-2x^2/(1-... (continued fraction),
G.f.: 1/(1-x-x^2-x^2/(1-x^2-x^2/(1-x^2-x^2/(1-x^2-x^2/(1-... (continued fraction). (End)
D-finite with recurrence (n+1)*a(n) -2*a(n-1) +6*(-n+1)*a(n-2) -2*a(n-3) +(n-3)*a(n-4)=0. - R. J. Mathar, Nov 30 2012
a(n) ~ (1+sqrt(2))^(n+1) / (2^(3/4) * sqrt(Pi*n)). - Vaclav Kotesovec, Feb 13 2014
Comments