cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026003 a(n) = T([n/2],[(n+1)/2]), where T = Delannoy triangle (A008288).

Original entry on oeis.org

1, 1, 3, 5, 13, 25, 63, 129, 321, 681, 1683, 3653, 8989, 19825, 48639, 108545, 265729, 598417, 1462563, 3317445, 8097453, 18474633, 45046719, 103274625, 251595969, 579168825, 1409933619, 3256957317, 7923848253, 18359266785, 44642381823
Offset: 0

Views

Author

Keywords

Comments

Number of lattice paths from (0,0) to the line x=n consisting of U=(1,1), D=(1,-1) and H=(2,0) steps and never going below the x-axis (i.e. left factors of Schroeder paths); for example, a(3)=5, counting the paths UUU,UUD,UDU,HU and UH. - Emeric Deutsch, Oct 27 2002
Transform of A001405 by |A049310(n,k)|, that is, transform of central binomial coefficients C(n,floor(n/2)) by Chebyshev mapping which takes a sequence with g.f. g(x) to the sequence with g.f. (1/(1-x^2))g(x/(1-x^2)). - Paul Barry, Jul 30 2005
The Kn1p sums, p >= 1, see A180662, of the Schroeder triangle A033877 (offset 0) are all related to A026003, e.g. Kn11(n) = A026003(n), Kn12(n) = A026003(n+2) - 1, Kn13(n) = A026003(n+4) - (2*n+7), Kn14(n) = A026003(n+6) - (2*n^2+18*n+41), Kn15(n) = A026003(n+8) - (4*n^3+66*n^2+368*n+693)/3, etc.. - Johannes W. Meijer, Jul 15 2013

References

  • L. Ericksen, Lattice path combinatorics for multiple product identities, J. Stat. Plan. Infer. 140 (2010) 2213-2226 doi:10.1016/j.jspi.2010.01.017
  • Lin Yang and S.-L. Yang, The parametric Pascal rhombus. Fib. Q., 57:4 (2019), 337-346.

Crossrefs

Bisections are the central Delannoy numbers A001850 and A002002 respectively.

Programs

  • Maple
    A026003 :=n -> add(binomial(n-k, k) * binomial(n-2*k, floor((n-2*k)/2)), k=0..floor(n/2)): seq(A026003(n), n=0..30); # Johannes W. Meijer, Jul 15 2013
  • Mathematica
    CoefficientList[Series[(Sqrt[(x^2-2*x-1)/(x^2+2*x-1)]-1)/2/x, {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 13 2014 *)

Formula

G.f.: (sqrt((x^2-2*x-1)/(x^2+2*x-1))-1)/2/x. - Vladeta Jovovic, Apr 27 2003
a(n) = Sum_{k=0..floor(n/2)} C(n-k, k)*C(n-2k, floor((n-2k)/2)). - Paul Barry, Jul 30 2005
From Paul Barry, Mar 01 2010: (Start)
G.f.: 1/(1-x-2x^2/(1-x^2/(1-2x^2/(1-x^2/(1-2x^2/(1-... (continued fraction),
G.f.: 1/(1-x-x^2-x^2/(1-x^2-x^2/(1-x^2-x^2/(1-x^2-x^2/(1-... (continued fraction). (End)
D-finite with recurrence (n+1)*a(n) -2*a(n-1) +6*(-n+1)*a(n-2) -2*a(n-3) +(n-3)*a(n-4)=0. - R. J. Mathar, Nov 30 2012
a(n) ~ (1+sqrt(2))^(n+1) / (2^(3/4) * sqrt(Pi*n)). - Vaclav Kotesovec, Feb 13 2014