A026013 a(n) = number of (s(0), s(1), ..., s(2n)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| = 1 for i = 1,2,...,n, s(0) = 2, s(2n) = 4. Also a(n) = T(2n,n-1), where T is the array defined in A026009.
1, 4, 15, 55, 200, 726, 2639, 9620, 35190, 129200, 476102, 1760673, 6533150, 24319050, 90795375, 339929880, 1275977670, 4801199400, 18106714050, 68430306750, 259129680264, 983085703116, 3736124441990, 14222020085880, 54221213973500
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Programs
-
Magma
[Binomial(2*n, n-1) - Binomial(2*n, n-4): n in [1..30]]; // G. C. Greubel, Mar 18 2021
-
Mathematica
Rest[CoefficientList[Series[(-1 + Sqrt[1 - 4*x])^3 * (1 - x) * (-1 + Sqrt[1 - 4*x] + 2*x) / (16*x^4), {x, 0, 20}], x]] (* Vaclav Kotesovec, Sep 03 2019 *) With[{f = CatalanNumber}, Table[f[n+3] -4*f[n+2] +3*f[n+1] +Sum[f[j+1]*f[n-j-1], {j, 0, n-1}], {n,30}]] (* G. C. Greubel, Mar 18 2021 *)
-
Sage
[binomial(2*n, n-1) - binomial(2*n, n-4) for n in (1..30)] # G. C. Greubel, Mar 18 2021
Formula
G.f.: (x + x^2*C^3)*C^3 where C = g.f. for Catalan numbers A000108.
E.g.f.: exp(2*x)*(Bessel_I(1,2*x)-Bessel_I(4,2*x)). - Paul Barry, Jun 04 2007
Conjecture: (n+4)*(n+1)*a(n) -4*(n^2+4*n+6)*a(n-1) +4*(2*n-3)*a(n-2)=0. - R. J. Mathar, Nov 13 2012
a(n) ~ 15 * 4^n / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Sep 03 2019
From G. C. Greubel, Mar 18 2021: (Start)
a(n) = C(n+3) - 4*C(n+2) + 3*C(n+1) + Sum_{j=0..n-1} C(j+1)*C(n-j-1), where C(n) are the Catalan numbers (A000108).
a(n) = binomial(2*n, n-1) - binomial(2*n, n-4) = A026009(2*n, n-1). (End)
Extensions
Corrected by Franklin T. Adams-Watters, Oct 25 2006