cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026013 a(n) = number of (s(0), s(1), ..., s(2n)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| = 1 for i = 1,2,...,n, s(0) = 2, s(2n) = 4. Also a(n) = T(2n,n-1), where T is the array defined in A026009.

Original entry on oeis.org

1, 4, 15, 55, 200, 726, 2639, 9620, 35190, 129200, 476102, 1760673, 6533150, 24319050, 90795375, 339929880, 1275977670, 4801199400, 18106714050, 68430306750, 259129680264, 983085703116, 3736124441990, 14222020085880, 54221213973500
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [Binomial(2*n, n-1) - Binomial(2*n, n-4): n in [1..30]]; // G. C. Greubel, Mar 18 2021
  • Mathematica
    Rest[CoefficientList[Series[(-1 + Sqrt[1 - 4*x])^3 * (1 - x) * (-1 + Sqrt[1 - 4*x] + 2*x) / (16*x^4), {x, 0, 20}], x]] (* Vaclav Kotesovec, Sep 03 2019 *)
    With[{f = CatalanNumber}, Table[f[n+3] -4*f[n+2] +3*f[n+1] +Sum[f[j+1]*f[n-j-1], {j, 0, n-1}], {n,30}]] (* G. C. Greubel, Mar 18 2021 *)
  • Sage
    [binomial(2*n, n-1) - binomial(2*n, n-4) for n in (1..30)] # G. C. Greubel, Mar 18 2021
    

Formula

G.f.: (x + x^2*C^3)*C^3 where C = g.f. for Catalan numbers A000108.
E.g.f.: exp(2*x)*(Bessel_I(1,2*x)-Bessel_I(4,2*x)). - Paul Barry, Jun 04 2007
Conjecture: (n+4)*(n+1)*a(n) -4*(n^2+4*n+6)*a(n-1) +4*(2*n-3)*a(n-2)=0. - R. J. Mathar, Nov 13 2012
a(n) ~ 15 * 4^n / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Sep 03 2019
From G. C. Greubel, Mar 18 2021: (Start)
a(n) = C(n+3) - 4*C(n+2) + 3*C(n+1) + Sum_{j=0..n-1} C(j+1)*C(n-j-1), where C(n) are the Catalan numbers (A000108).
a(n) = binomial(2*n, n-1) - binomial(2*n, n-4) = A026009(2*n, n-1). (End)

Extensions

Corrected by Franklin T. Adams-Watters, Oct 25 2006