cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026014 a(n) = number of (s(0), s(1), ..., s(2n)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| = 1 for i = 1,2,...,n, s(0) = 2, s(2n) = 6. Also a(n) = T(2n,n-2), where T is the array defined in A026009.

Original entry on oeis.org

1, 6, 28, 119, 483, 1911, 7448, 28764, 110466, 422807, 1615152, 6163885, 23514855, 89714835, 342411120, 1307613480, 4997082510, 19111589280, 73154916744, 280265589198, 1074685552094, 4124573481446, 15843809385168, 60914041121640
Offset: 2

Views

Author

Keywords

Crossrefs

First differences of A000588.

Programs

  • Magma
    [Binomial(2*n, n-2) - Binomial(2*n, n-5): n in [2..30]]; // G. C. Greubel, Mar 19 2021
  • Mathematica
    Table[Binomial[2*n, n-2] - Binomial[2*n, n-5], {n, 2, 30}] (* G. C. Greubel, Mar 19 2021 *)
  • Sage
    [binomial(2*n, n-2) - binomial(2*n, n-5) for n in (2..30)] # G. C. Greubel, Mar 19 2021
    

Formula

-(n-2)*(n+5)*(n+23)*a(n) +(-n^3+127*n^2+188*n-432)*a(n-1) +2*(n-1)*(2*n-3)*(5*n-24)*a(n-2) = 0. - R. J. Mathar, Jun 20 2013
From G. C. Greubel, Mar 19 2021: (Start)
G.f.: (1-x)*(1 -7*x +14*x^2 -7*x^3 -(1 -5*x +6*x^2 -x^3)*sqrt(1-4*x))/(2*x^5).
G.f.: (1-x)*x^2*C(x)^7, where C(x) is the g.f. of the Catalan numbers (A000108).
E.g.f.: exp(2*x)*(BesselI(2, 2*x) - BesselI(5, 2*x)).
a(n) = binomial(2*n, n-2) - binomial(2*n, n-5) = A026009(2*n, n-2).
a(n) = 1 if n = 2 else f(n) - f(n-1), where f(n) = Sum_{j=0..n-2} C(n-j-2)*(C(j+5) -4*C(j+4) +3*C(j+3)) and C(n) are the Catalan numbers. (End)
From G. C. Greubel, Mar 22 2021: (Start)
a(n) = C(n+4) -6*C(n+3) +11*C(n+2) -7*C(n+1) +C(n).
a(n) = 21*(n*(n-1)*(n^2+n+4)/((n+2)*(n+3)*(n+4)*(n+5)))*C(n), where C(n) are the Catalan numbers. (End)