cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026029 Number of (s(0), s(1), ..., s(2n)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| = 1 for i = 1,2,...,n, s(0) = 3, s(2n) = 3. Also T(2n,n), where T is defined in A026022.

Original entry on oeis.org

1, 2, 6, 20, 69, 242, 858, 3068, 11050, 40052, 145996, 534888, 1968685, 7276050, 26993490, 100490220, 375287550, 1405622460, 5278838100, 19873977240, 74994427170, 283595947284, 1074568266756, 4079184055640, 15511924233204, 59083160374952, 225384613313944
Offset: 0

Views

Author

Keywords

Comments

Hankel transform is A008619(n+1). - Paul Barry, May 11 2009

Programs

  • Mathematica
    CoefficientList[Series[(1 - 2*x)*(-1 + Sqrt[1 - 4*x] + 2*x)^2 / (4*x^4), {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 03 2019 *)

Formula

Expansion of (1+x^2*C^4)*C^2, where C = (1-(1-4*x)^(1/2))/(2*x) is g.f. for Catalan numbers, A000108.
a(n) = Sum_{k=0..n} C(n, k)*Sum_{i=0..k} C(k, 2i)*A000108(i+1). - Paul Barry, Jul 18 2003
a(n) = Sum_{k=0..3} A039599(n,k) = A000108(n) + A000245(n) + A000344(n) + A000588(n) = A026012(n) + A000588(n). - Philippe Deléham, Nov 12 2008
a(n) = C(2n,n) - C(2n,n-4). - Paul Barry, May 11 2009
Conjecture: (n+4)*a(n) + 6*(-n-2)*a(n-1) + 4*(2*n-1)*a(n-2) = 0. - R. J. Mathar, Nov 24 2012
a(n) ~ 4^(n+2) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Sep 03 2019
E.g.f.: exp(2*x)*(BesselI(0, 2*x) - BesselI(4, 2*x)). - Stefano Spezia, Jan 17 2024