cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026030 a(n) = T(2n,n-1), where T is defined in A026022.

Original entry on oeis.org

1, 4, 15, 56, 209, 780, 2912, 10880, 40698, 152456, 572033, 2150040, 8095425, 30535260, 115377660, 436698240, 1655607390, 6286707000, 23908446510, 91057063344, 347281885818, 1326262602104, 5071418015120, 19415851639296, 74419447792340
Offset: 1

Views

Author

Keywords

Comments

a(n) = number of (s(0), s(1), ..., s(2n)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| = 1 for i = 1,2,...,n, s(0) = 3, s(2n) = 5.

Examples

			x + 4*x^2 + 15*x^3 + 56*x^4 + 209*x^5 + 780*x^6 + 2912*x^7 + 10880*x^8 + ...
		

Crossrefs

Cf. A001075.

Programs

  • PARI
    {a(n) = binomial( 2*n, n-1) - binomial( 2*n, n-5)} /* Michael Somos, Jan 08 2012 */

Formula

a(n) = C(2n, n-1) - C(2n, n-5). G.f.: (1+x^2C^4)*C^4, where C=(1-sqrt(1-4x))/(2x). - Ralf Stephan, Jan 09 2005
G.f.: 2*x*(1-2*x) / ((1-2*x)*(1-4*x+x^2) + (1-x)*(1-3*x)*sqrt(1-4*x)). - Michael Somos, Jan 08 2012
Conjecture: (n+5)*a(n) -2*(5*n+16)*a(n-1) +(35*n+47)*a(n-2) +2*(-25*n+14)*a(n-3) +12*(2*n-5)*a(n-4)=0. - R. J. Mathar, Jun 15 2014