A026107 Second differences of Motzkin numbers (A001006).
1, 3, 7, 18, 46, 120, 316, 841, 2257, 6103, 16611, 45475, 125139, 345957, 960417, 2676291, 7483299, 20989833, 59042805, 166520124, 470781528, 1333970190, 3787707322, 10775741271, 30711538351, 87677551081, 250704001213, 717923179762
Offset: 2
Keywords
Links
- T.-X. He and L. W. Shapiro, Fuss-Catalan matrices, their weighted sums, and stabilizer subgroups of the Riordan group, Lin. Alg. Applic. 532 (2017) 25-41.
Formula
The sequence 1,1,3,7,18,... has a(n) = Sum_{k=0..n} binomial(n,2k)*A000108(k+1). - Paul Barry, Jul 18 2003
G.f.: ((1-z)^2*M - 1 + z - z^2)/z, where M is the generating function of the Motzkin sequence A001006 (M = 1 + z*M + z^2*M^2).
(n+3)*a(n) + 3*(-n-1)*a(n-1) + (-n-3)*a(n-2) + 3*(n-3)*a(n-3) = 0. - R. J. Mathar, Nov 26 2012
a(n) ~ 2 * 3^(n + 1/2) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Sep 17 2019
With offset 0 and a(0) = 1 prepended (see Paul Barry's formula above), a(n) = hypergeom([3/2, (1 - n)/2, -n/2], [1/2, 3], 4). - Peter Luschny, Dec 19 2021
Extensions
Simpler definition from Ralf Stephan, Dec 16 2004
Comments