cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026122 a(n) is the number of (s(0),s(1),...,s(n)) such that every s(i) is a nonnegative integer, s(0) = 1, s(n) = 1, |s(1) - s(0)| = 1, |s(i) - s(i-1)| <= 1 for i >= 2. Also a(n) = T(n,n), where T is the array in A026120.

Original entry on oeis.org

2, 4, 11, 28, 74, 196, 525, 1416, 3846, 10508, 28864, 79664, 220818, 614460, 1715874, 4807008, 13506534, 38052972, 107477319, 304261404, 863188662, 2453737132, 6988033949, 19935797080, 56966012730, 163026450132, 467219178549, 1340810339036
Offset: 2

Views

Author

Keywords

Crossrefs

First differences of A026107.

Programs

  • Mathematica
    Drop[CoefficientList[Series[-1 + (1 - x)^2*(-1 + x + Sqrt[1 - 2*x - 3*x^2])^2 / (4*x^4), {x, 0, 30}], x], 2] (* Vaclav Kotesovec, Sep 17 2019 *)
  • Maxima
    a(n):=2*sum((binomial(2*m+1,m)*binomial(n-1,2*m-1))/(m+2),m,1,n/2); /* Vladimir Kruchinin, Jan 24 2022 */

Formula

G.f.: (-1 + (1-z)^2 * M^2), with M the g.f. of the Motzkin numbers (A001006). [corrected by Vaclav Kotesovec, Sep 17 2019]
Conjecture: (n+4)*a(n) +(-3*n-5)*a(n-1) +(-n-6)*a(n-2) +3*(n-3)*a(n-3)=0. - R. J. Mathar, Jun 23 2013
a(n) ~ 4 * 3^(n + 1/2) / (sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Sep 17 2019
a(n) = 2*Sum_{m=1..n/2} C(2*m+1,m)*C(n-1,2*m-1)/(m+2). - Vladimir Kruchinin, Jan 24 2022