A026147 a(n) = position of n-th 1 in A001285 or A010059 (Thue-Morse sequence).
1, 4, 6, 7, 10, 11, 13, 16, 18, 19, 21, 24, 25, 28, 30, 31, 34, 35, 37, 40, 41, 44, 46, 47, 49, 52, 54, 55, 58, 59, 61, 64, 66, 67, 69, 72, 73, 76, 78, 79, 81, 84, 86, 87, 90, 91, 93, 96, 97, 100, 102, 103, 106, 107, 109, 112, 114, 115, 117, 120, 121, 124, 126, 127, 130
Offset: 1
Examples
Let k=2. Then A = {1,4,6,7} and B = {2,3,5,8} have the property that 1^0+4^0+6^0+7^0 = 2^0+3^0+5^0+8^0 = 4, 1^1+4^1+6^1+7^1 = 2^1+3^1+5^1+8^1 = 18, and 1^2+4^2+6^2+7^2 = 2^2+3^2+5^2+8^2 = 102. - _Michael Somos_, Jun 09 2013
References
- Edward J. Barbeau, Power Play, MAA, 1997. See p. 104.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
a[ n_] := If[ n < 1, 0, 2 n + Mod[ Total[ IntegerDigits[ n - 1, 2]], 2] - 1] (* Michael Somos, Jun 09 2013 *)
-
PARI
a(n)=2*n+hammingweight(n-1)%2-1 \\ Charles R Greathouse IV, Mar 22 2013
-
PARI
{a(n) = if( n<1, 0, 2*n + subst( Pol( binary( n-1)), x, 1)%2 - 1)} /* Michael Somos, Jun 09 2013 */
-
Python
def A026147(n): return 1+((m:=n-1).bit_count()&1)+(m<<1) # Chai Wah Wu, Mar 03 2023
Formula
a(n) = 1+A001969(n).
a(n) = Sum_{k=0..2n} mod(-2 + Sum_{j=0..k} floor(C(k, j)/2), 3). - Paul Barry, Dec 24 2004
a(n) + A010059(n+1) = 2n + 2 for n >= 0. - Clark Kimberling, Oct 06 2014
Comments