cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026166 For n >= 2, let h=floor((n-1)/2), L=n-h, R=n+h; then a(L)=n if a(L) not yet defined, otherwise a(R)=n; thus |a(n)-n| = floor((1/2)*(a(n)-1)).

Original entry on oeis.org

1, 2, 4, 3, 8, 10, 5, 6, 16, 7, 20, 22, 9, 26, 28, 11, 12, 34, 13, 14, 40, 15, 44, 46, 17, 18, 52, 19, 56, 58, 21, 62, 64, 23, 24, 70, 25, 74, 76, 27, 80, 82, 29, 30, 88, 31, 32, 94, 33, 98, 100, 35, 36, 106, 37, 38, 112, 39, 116, 118, 41, 42
Offset: 1

Views

Author

Keywords

Comments

Every positive integer occurs exactly once. The inverse permutation of the positive integers is given by A026167. - Clark Kimberling, Oct 20 2019

Crossrefs

Programs

  • Mathematica
    a[1] = 1; z = 300;
    Do[{L, R} = {n - #, n + #} &[Floor[(n - 1)/2]];
      If[! Head[a[L]] === Integer, a[L] = n, a[R] = n], {n, 2, z}];
    a026166 = Most[Last[
       Last[Reap[NestWhile[# + 1 &, 1, Head[Sow[a[#]]] === Integer &]]]]];
    ListPlot[a026166]  (* Peter J. C. Moses, Oct 20 2019 *)
  • PARI
    seq(n)={my(a=vector(n)); a[1]=1; for(i=1, 2*n-1, my(h=(i-1)\2); if(!a[i-h], a[i-h]=i, if(i+h<=n, a[i+h]=i))); a} \\ Andrew Howroyd, Oct 15 2019
  • Python
    A026166 = {1: 1}
    for n in range(2, 1000):
        h=(n-1)//2
        L=n-h
        R=n+h
        if not L in A026166 :
            A026166[L]=n
        else :
            A026166[R]=n
    for n in range(1,2000):
        if n in A026166:
           print(A026166[n], end=',')
        else:
            break
    # R. J. Mathar, Aug 26 2019
    

Formula

|a(n)-n| = floor((1/2)*(a(n)-1)).
This formula does not permit us to calculate the n-th term of the sequence, since the equation |x-n| = floor((1/2)*(x-1)) has at least 2 integer solutions for all n. - Michel Dekking, Nov 26 2019

Extensions

Edited by N. J. A. Sloane, Jan 31 2020