cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A327138 Numbers k such that cos(2k) < cos(2k+2).

Original entry on oeis.org

2, 5, 8, 11, 12, 14, 15, 17, 18, 20, 21, 24, 27, 30, 33, 34, 36, 37, 39, 40, 42, 43, 46, 49, 52, 55, 56, 58, 59, 61, 62, 64, 65, 68, 71, 74, 77, 78, 80, 81, 83, 84, 86, 87, 90, 93, 96, 99, 100, 102, 103, 105, 106, 108, 109, 112, 115, 118, 121, 122, 124, 125
Offset: 1

Views

Author

Clark Kimberling, Aug 23 2019

Keywords

Comments

The sequences A327138, A327139, A327140 partition the positive integers.
Conjecture: 2.07 < n*Pi - a(n) < 3.08 for n >= 1.

Examples

			(cos 2, cos 4, ...) = (-0.4, -0.6, 0.9, -0.1, -0.8, ...) approximately, so that the differences, in sign, are - + - - + - - + - - + +, with "+" in places 2,5,8,11,12,... (A327138), "- +" starting in places 1,4,7,10,13,... (A327139), and "- - +" starting in places 3,6,9,22,25,... (A327140).
		

Crossrefs

Programs

A327139 Numbers k such that cos(2k) > cos(2k+2) < cos(2k+4).

Original entry on oeis.org

1, 4, 7, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 45, 48, 51, 54, 57, 60, 63, 67, 70, 73, 76, 79, 82, 85, 89, 92, 95, 98, 101, 104, 107, 111, 114, 117, 120, 123, 126, 129, 133, 136, 139, 142, 145, 148, 151, 155, 158, 161, 164, 167, 170, 173, 176, 180, 183
Offset: 1

Views

Author

Clark Kimberling, Aug 23 2019

Keywords

Comments

The sequences A327138, A327139, A327140 partition the positive integers.

Crossrefs

Programs

  • Mathematica
    z = 500; f[x_] := f[x] = Cos[2 x]; t = Range[1, z];
    Select[t, f[#] < f[# + 1] &]    (* A327138 *)
    Select[t, f[#] > f[# + 1] < f[# + 2] &]  (* A327139 *)
    Select[t, f[#] > f[# + 1] > f[# + 2] < f[# + 3] &]   (* A327140 *)

Formula

(cos 2, cos 4, ...) = (-0.4, -0.6, 0.9, -0.1, -0.8, ...) approximately, so that the differences, in sign, are - + - - + - - + - - + +, with "+" in places 2,5,8,11,12,... (A327138), "- +" starting in places 1,4,7,10,13,... (A327139), and "- - +" starting in places 3,6,9,22,25,... (A327140).

A327136 Numbers k such that sin(2k) > sin(2k+2) < sin(2k+4).

Original entry on oeis.org

1, 4, 8, 11, 14, 17, 20, 23, 26, 30, 33, 36, 39, 42, 45, 48, 52, 55, 58, 61, 64, 67, 70, 74, 77, 80, 83, 86, 89, 92, 96, 99, 102, 105, 108, 111, 114, 118, 121, 124, 127, 130, 133, 136, 140, 143, 146, 149, 152, 155, 158, 162, 165, 168, 171, 174, 177, 180, 184
Offset: 1

Views

Author

Clark Kimberling, Aug 23 2019

Keywords

Comments

The sequences A026317, A327136, A327137 partition the nonnegative integers.
Conjecture: 1.285 < n*Pi - a(n) < 1.286 for n >= 1.

Examples

			(sin 2, sin 4, ...) = (0.9, -0.7, -0.2, 0.9, -0.5, ...) approximately, so that the differences, in sign, are - + + -  + + - - + - - + ..., with "+" in places 2,3,5,6,... (A026317), "- +" starting in places 1,4,8,11,... (A327136), and "- - +" starting in places 7,10,13,16,... (A327137).
		

Crossrefs

Programs

  • Mathematica
    z = 500; f[x_] := f[x] = Sin[2 x]; t = Range[1, z];
    Select[t, f[#] < f[# + 1] &]    (* A026317 *)
    Select[t, f[#] > f[# + 1] < f[# + 2] &]  (* A327136 *)
    Select[t, f[#] > f[# + 1] > f[# + 2] < f[# + 3] &]   (* A327137 *)

A327137 Numbers k such that sin(2k) > sin(2k+2) > sin(2k+4) < sin(2k+6).

Original entry on oeis.org

7, 10, 13, 16, 29, 32, 35, 38, 51, 54, 57, 60, 73, 76, 79, 82, 95, 98, 101, 104, 117, 120, 123, 126, 139, 142, 145, 148, 161, 164, 167, 170, 183, 186, 189, 192, 205, 208, 211, 214, 227, 230, 233, 236, 249, 252, 255, 258, 271, 274, 277, 280, 293, 296, 299
Offset: 1

Views

Author

Clark Kimberling, Aug 23 2019

Keywords

Comments

The sequences A026317, A327136, A327137 partition the nonnegative integers.

Examples

			(sin 2, sin 4, ...) = (0.9, -0.7, -0.2, 0.9, -0.5, ...) approximately, so that the differences, in sign, are - + + -  + + - - + - - + ..., with "+" in places 2,3,5,6,... (A026317), "- +" starting in places 1,4,8,11,... (A327136), and "- - +" starting in places 7,10,13,16,... (A327137).
		

Crossrefs

Programs

  • Mathematica
    z = 500; f[x_] := f[x] = Sin[2 x]; t = Range[1, z];
    Select[t, f[#] < f[# + 1] &]    (* A026317 *)
    Select[t, f[#] > f[# + 1] < f[# + 2] &]  (* A327136 *)
    Select[t, f[#] > f[# + 1] > f[# + 2] < f[# + 3] &]   (* A327137 *)

A327140 Numbers k such that cos(2k) > cos(2k+2) > cos(2k+4) < cos(2k+6).

Original entry on oeis.org

3, 6, 9, 22, 25, 28, 31, 44, 47, 50, 53, 66, 69, 72, 75, 88, 91, 94, 97, 110, 113, 116, 119, 132, 135, 138, 141, 154, 157, 160, 163, 179, 182, 185, 188, 201, 204, 207, 210, 223, 226, 229, 232, 245, 248, 251, 254, 267, 270, 273, 276, 289, 292, 295, 298, 311
Offset: 1

Views

Author

Clark Kimberling, Aug 23 2019

Keywords

Comments

The sequences A327138, A327139, A327140 partition the positive integers.

Examples

			(cos 2, cos 4, ...) = (-0.4, -0.6, 0.9, -0.1, -0.8, ...) approximately, so that the differences, in sign, are - + - - + - - + - - + +, with "+" in places 2,5,8,11,12, ... (A327138), "- +" starting in places 1,4,7,10,13,... (A327139), and "- - +" starting in places 3,6,9,22,25,... (A327140).
		

Crossrefs

Programs

  • Mathematica
    z = 500; f[x_] := f[x] = Cos[2 x]; t = Range[1, z];
    Select[t, f[#] < f[# + 1] &]    (* A327138 *)
    Select[t, f[#] > f[# + 1] < f[# + 2] &]  (* A327139 *)
    Select[t, f[#] > f[# + 1] > f[# + 2] < f[# + 3] &]   (* A327140 *)

A026319 a(n) is the n-th nonnegative integer k satisfying |sin(k)| < |cos(k)| < |sin(k+1)|.

Original entry on oeis.org

7, 10, 13, 16, 29, 32, 35, 38, 51, 54, 57, 60, 73, 76, 79, 82, 95, 98, 101, 104, 117, 120, 123, 126, 139, 142, 145, 148, 161, 164, 167, 170, 186, 189, 192, 208, 211, 214, 230, 233, 236, 252, 255, 258, 274, 277, 280, 296, 299, 302
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[0,310],Abs[Sin[#]]Stefano Spezia, Feb 04 2025 *)
Showing 1-6 of 6 results.