A026327 a(n) = number of (s(0), s(1), ..., s(n)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| <= 1 for i = 1,2,...,n, s(0) = 2, s(n) = 4. Also a(n) = T(n,n-2), where T is the array in A026323.
1, 3, 10, 30, 90, 266, 783, 2295, 6710, 19580, 57057, 166101, 483210, 1405080, 4084590, 11872494, 34508997, 100313635, 291646580, 848102640, 2466916474, 7177785582, 20891443950, 60827142350, 177167486925, 516217883571, 1504692189588
Offset: 2
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 2..1000
Programs
-
Mathematica
Rest[Rest[CoefficientList[Series[x^2*((1-x-Sqrt[1-2*x-3*x^2])/(2*x^2))^2/(1-x-x^2*((1-x-Sqrt[1-2*x-3*x^2])/(2*x^2)+1/(1-x-x^2/(1-x)))), {x, 0, 20}], x]]] (* Vaclav Kotesovec, Apr 21 2015 *)
Formula
Conjecture: -(n+8)*(n-2)*a(n) +3*(2*n^2+7*n-28)*a(n-1) +3*(-3*n^2-n+36)*a(n-2) -4*(n+4)*(n-1)*a(n-3) +12*(n-1)*(n-2)*a(n-4)=0. - R. J. Mathar, Jun 23 2013
G.f: x^2*M(x)^2/(1-x-x^2*(M(x)+1/(1-x-x^2/(1-x)))), where M(x) is g.f. of Motzkin paths. - José Luis Ramírez Ramírez, Apr 20 2015
a(n) ~ 5 * 3^(n+5/2) / (2*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Apr 21 2015
Comments