cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026327 a(n) = number of (s(0), s(1), ..., s(n)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| <= 1 for i = 1,2,...,n, s(0) = 2, s(n) = 4. Also a(n) = T(n,n-2), where T is the array in A026323.

Original entry on oeis.org

1, 3, 10, 30, 90, 266, 783, 2295, 6710, 19580, 57057, 166101, 483210, 1405080, 4084590, 11872494, 34508997, 100313635, 291646580, 848102640, 2466916474, 7177785582, 20891443950, 60827142350, 177167486925, 516217883571, 1504692189588
Offset: 2

Views

Author

Keywords

Comments

Number of paths in the plane x>=0 and y>=-2, from (0,0) to (n,2), and consisting of steps U=(1,1), D=(1,-1) and H=(1,0). For example, for n=4, we have the 10 paths: UUUD, UUHH, UUDU, UHUH, UHHU, UDUU, HUUH, HUHU, HHUU, DUUU. - José Luis Ramírez Ramírez, Apr 20 2015

Programs

  • Mathematica
    Rest[Rest[CoefficientList[Series[x^2*((1-x-Sqrt[1-2*x-3*x^2])/(2*x^2))^2/(1-x-x^2*((1-x-Sqrt[1-2*x-3*x^2])/(2*x^2)+1/(1-x-x^2/(1-x)))), {x, 0, 20}], x]]] (* Vaclav Kotesovec, Apr 21 2015 *)

Formula

Conjecture: -(n+8)*(n-2)*a(n) +3*(2*n^2+7*n-28)*a(n-1) +3*(-3*n^2-n+36)*a(n-2) -4*(n+4)*(n-1)*a(n-3) +12*(n-1)*(n-2)*a(n-4)=0. - R. J. Mathar, Jun 23 2013
G.f: x^2*M(x)^2/(1-x-x^2*(M(x)+1/(1-x-x^2/(1-x)))), where M(x) is g.f. of Motzkin paths. - José Luis Ramírez Ramírez, Apr 20 2015
a(n) ~ 5 * 3^(n+5/2) / (2*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Apr 21 2015