A026363 a(n) is the least k such that s(k) = n, where s = A026362.
1, 3, 4, 5, 6, 8, 9, 11, 12, 14, 15, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 35, 36, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 53, 55, 56, 57, 58, 60, 61, 63, 64, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 79, 80, 82, 83, 85, 86
Offset: 1
Keywords
Links
- Carmine Suriano, Table of n, a(n) for n = 1..10000
- Robbert Fokkink and Gandhar Joshi, On Cloitre's hiccup sequences, arXiv:2507.16956 [math.CO], 2025. See pp. 5, 12.
Programs
-
Mathematica
seqA = Table[Floor[(n+2)/2], {n, 1, 180}] (* A004526 *) seqB = Table[n, {n, 1, 80}]; (* A000027 *) jointRank[{seqA_, seqB_}] := {Flatten@Position[#1, {_, 1}], Flatten@Position[#1, {_, 2}]} &[Sort@Flatten[{{#1, 1} & /@ seqA, {#1, 2} & /@ seqB}, 1]]; limseqU = FixedPoint[jointRank[{seqA, #1[[1]]}] &, jointRank[{seqA, seqB}]][[1]] (* A026363 *) Complement[Range[Length[seqA]], limseqU] (* A026364 *) (* Peter J. C. Moses, Mar 10 2011 *) s = Nest[Flatten[# /. {0 -> {1, 1}, 1 -> {1, 0, 1}}] &, {0}, 13] (* A285430 *) Flatten[Position[s, 0]] (* A026364 *) Flatten[Position[s, 1]] (* A026363 *) (* Clark Kimberling, Apr 28 2017 *)
Formula
a(1)=1, then a(n)=a(n-1)+2 if n is even and n/2 is not in the sequence, a(n)=a(n-1)+1 otherwise (in particular a(2k+1)=a(2k)+1). a(n)=(1+sqrt(3))/2*n+O(1). Taking a(0)=0, for n>=1 a(2n)-a(2n-2)=A080428(n). - Benoit Cloitre, Apr 23 2008
Comments