A026376 a(n) is the number of integer strings s(0),...,s(n) counted by array T in A026374 that have s(n)=2; also a(n) = T(2n,n-1).
1, 6, 30, 144, 685, 3258, 15533, 74280, 356283, 1713690, 8263596, 39938616, 193419915, 938430990, 4560542550, 22195961280, 108171753355, 527816696850, 2578310320610, 12607504827600, 61706212037295, 302275142049870, 1481908332595625, 7270432009471224
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- Emeric Deutsch, Emanuele Munarini, and Simone Rinaldi, Skew Dyck paths, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203.
- Ricardo Gómez Aíza, Trees with flowers: A catalog of integer partition and integer composition trees with their asymptotic analysis, arXiv:2402.16111 [math.CO], 2024. See p. 18.
- Toufik Mansour and José Luis Ramírez, Enumeration of Fuss-skew paths, Ann. Math. Inform. (2022) Vol. 55, 125-136. See p. 129.
Programs
-
Maple
a := n -> simplify(GegenbauerC(n-1, -n, -3/2)): seq(a(n), n=1..24); # Peter Luschny, May 09 2016
-
Mathematica
Rest[CoefficientList[Series[(1-3*x-Sqrt[1-6*x+5*x^2])/(2*x*Sqrt[1-6*x+5*x^2]), {x, 0, 20}], x]] (* Vaclav Kotesovec, Feb 13 2014 *)
-
PARI
a(n)=if(n<0,0,polcoeff((1+3*x+x^2)^n,n-1))
-
Sage
A026376 = lambda n : n*hypergeometric([1, 3/2, 1-n], [1, 3], -4) [round(A026376(n).n(100)) for n in (1..24)] # Peter Luschny, Sep 16 2014
-
Sage
# Recurrence: def A026376(): x, y, n = 1, 1, 1 while True: x, y = y, ((6*n + 3)*y - (5*n - 5)*x) / (n + 2) yield n*x n += 1 a = A026376() [next(a) for i in (1..24)] # Peter Luschny, Sep 16 2014
Formula
E.g.f.: exp(3x)*I_1(2x), where I_1 is Bessel function. - Michael Somos, Sep 09 2002
G.f.: (1 - 3*z - t)/(2*z*t) where t = sqrt(1-6*z+5*z^2). - Emeric Deutsch, May 25 2003
a(n) = [t^(n+1)](1+3t+t^2)^n. a := n -> Sum_{j=ceiling((n+1)/2)..n} 3^(2j-n-1)*binomial(n, j)*binomial(j, n+1-j). - Emeric Deutsch, Jan 30 2004
a(n) = Sum_{k=0..n} binomial(n, k)*binomial(2k, k+1). - Paul Barry, Sep 20 2004
a(n) = n*A002212(n). - Emeric Deutsch, Aug 05 2007
D-finite with recurrence (n+1)*a(n) - 9*n*a(n-1) + (23*n-27)*a(n-2) + 15*(-n+2)*a(n-3) = 0. - R. J. Mathar, Dec 02 2012
a(n) ~ 5^(n+1/2) / (2*sqrt(Pi*n)). - Vaclav Kotesovec, Feb 13 2014
a(n) = n*hypergeometric([1, 3/2, 1-n],[1, 3],-4). - Peter Luschny, Sep 16 2014
a(n) = GegenbauerC(n-1, -n, -3/2). - Peter Luschny, May 09 2016
Comments