A026395 a(n) = 5*a(n-2), starting 1,2,4.
1, 2, 4, 10, 20, 50, 100, 250, 500, 1250, 2500, 6250, 12500, 31250, 62500, 156250, 312500, 781250, 1562500, 3906250, 7812500, 19531250, 39062500, 97656250, 195312500, 488281250, 976562500, 2441406250, 4882812500, 12207031250
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (0,5).
Programs
-
Mathematica
LinearRecurrence[{0, 5}, {1, 2, 4}, 50] (* Paolo Xausa, Feb 02 2024 *)
Formula
G.f.: (1+2*x-x^2)/(1-5*x^2). - Ralf Stephan, Apr 30 2004
a(n) = a(n-1) + 2*5^(n/2 -1) if n is even, a(n) = a(n-2) + 2*phi(5^[(n-1)/2]) if n is odd, where phi is the Euler phi function. - Shannon Ezzat (sez10(AT)math.canterbury.ac.nz), Jan 20 2009
For n > 3: a(n) = a(n-2)*a(n-1)/a(n). - Reinhard Zumkeller, Mar 06 2011
Extensions
Better name from Ralf Stephan, Jul 17 2013
Comments