A026396 Sum_{T(i,j)}, 0<=j<=i, 0<=i<=n, where T is the array in A026386.
3, 7, 17, 37, 87, 187, 437, 937, 2187, 4687, 10937, 23437, 54687, 117187, 273437, 585937, 1367187, 2929687, 6835937, 14648437, 34179687, 73242187, 170898437, 366210937, 854492187, 1831054687, 4272460937, 9155273437, 21362304687, 45776367187, 106811523437
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,5,-5).
Crossrefs
Cf. A026386.
Programs
-
Mathematica
LinearRecurrence[{1, 5, -5}, {3, 7, 17}, 50] (* Paolo Xausa, Sep 16 2024 *)
-
PARI
Vec((-5*x^2 + 4*x + 3)/(5*x^3 - 5*x^2 - x + 1) + O(x^40)) \\ Colin Barker, Nov 25 2016
Formula
G.f.: (3+4*x-5*x^2) / ((1-x)*(1-5*x^2)). - Ralf Stephan, Apr 30 2004
From Colin Barker, Nov 25 2016: (Start)
a(n) = (7*5^(n/2) - 1)/2 for n even.
a(n) = (6*5^((n+1)/2) - 2)/4 for n odd.
a(n) = a(n-1) + 5*a(n-2) - 5*a(n-3) for n>2. (End)
a(n) = (3-(-1)^n-(13+(-1)^n)*5^((1-(-1)^n+2*n)/4))/(2*(-1)^n-6). - Wesley Ivan Hurt, Oct 02 2021