cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026422 a(n) = least positive integer > a(n-1) and not a(i)*a(j) for 1 <= i <= j < n.

Original entry on oeis.org

1, 2, 3, 5, 7, 8, 11, 12, 13, 17, 18, 19, 20, 23, 27, 28, 29, 30, 31, 32, 37, 41, 42, 43, 44, 45, 47, 48, 50, 52, 53, 59, 61, 63, 66, 67, 68, 70, 71, 72, 73, 75, 76, 78, 79, 80, 83, 89, 92, 97, 98, 99, 101, 102, 103, 105, 107, 108, 109, 110
Offset: 1

Views

Author

Keywords

Crossrefs

Apart from initial term, same as A026424.
Cf. A026416 and references therein.

Programs

  • Mathematica
    a[1]=1; a[n_] := a[n] = (t= Union[Flatten[Table[a[i] a[j], {i, 1, n-1}, {j, i, n-1}]]]; Do[If[FreeQ[t, k], an = k; Break[]], {k, a[n-1]+1, Last[t]+1}]; an); Array[a, 60] (* Jean-François Alcover, May 06 2011 *)
    Select[Range[110], OddQ[Total[FactorInteger[#]][[2]]] &] (* T. D. Noe, May 07 2011 *)
    g = 110; t = Array[1 &, g];
    Table[If[t[[j]] == 1, t[[j*i]] = 0, t[[i*j]] = 1], {j, 2, g/2}, {i, 2, g/j}]; Flatten[Position[t, 1]] (* Horst H. Manninger, Mar 15 2023 *)
  • PARI
    is(n)=bigomega(n)%2 || n==1 \\ Charles R Greathouse IV, Sep 16 2015
    
  • Python
    from math import prod, isqrt
    from sympy import primerange, primepi, integer_nthroot
    def A026422(n):
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n+sum(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,m)) for m in range(2,x.bit_length()+1,2)))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m # Chai Wah Wu, Apr 10 2025

Extensions

Name corrected by Charles R Greathouse IV, Sep 16 2015