cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026480 a(1) = 1, a(2) = 2, a(3) = 4, and for n > 3, a(n) is the least positive integer > a(n-1) not of form a(i)*a(j)*a(k) for 1 <= i <= j <= k < n.

Original entry on oeis.org

1, 2, 4, 5, 6, 7, 9, 11, 13, 15, 17, 19, 21, 23, 27, 29, 31, 33, 37, 39, 41, 43, 47, 51, 53, 57, 59, 61, 67, 69, 71, 73, 79, 83, 87, 89, 93, 97, 101, 103, 107, 109, 111, 113, 123, 127, 128, 129, 131, 137, 139, 141, 149, 151, 157, 159, 160, 163, 167, 173, 177, 179, 181
Offset: 1

Views

Author

Keywords

Comments

From David A. Corneth, Sep 24 2016 (Start):
Let t be a term of this sequence. Let v = (i, j, m) be a vector of three elements where i is A007814(t), j = A007949(t) and m = A001222(t) - i - j. Then possible vectors v for t up to 100000 are {[0, 0, 0], [0, 0, 1], [0, 0, 4], [0, 0, 7], [0, 1, 1], [0, 1, 4], [0, 2, 0], [0, 3, 0], [0, 4, 3], [0, 5, 3], [0, 6, 2], [0, 7, 2], [0, 8, 1], [0, 9, 1], [0, 10, 0], [1, 0, 0], [1, 0, 3], [1, 0, 6], [1, 1, 0], [1, 1, 3], [1, 1, 6], [1, 4, 2], [1, 5, 2], [1, 6, 1], [1, 7, 1], [1, 8, 0], [1, 9, 0], [2, 0, 0], [2, 3, 2], [2, 5, 1], [2, 7, 0], [3, 0, 2], [3, 0, 5], [3, 1, 2], [3, 1, 5], [3, 3, 1], [3, 4, 1], [3, 5, 0], [3, 6, 0], [4, 2, 1], [4, 2, 4], [4, 4, 0], [5, 0, 1], [5, 0, 4], [5, 1, 1], [5, 1, 4], [5, 2, 0], [5, 3, 0], [6, 0, 3], [6, 1, 0], [6, 1, 3], [7, 0, 0], [7, 3, 2], [8, 0, 2], [8, 1, 2], [8, 3, 1], [8, 5, 0], [9, 2, 1], [9, 4, 0], [10, 0, 1], [10, 1, 1], [10, 2, 0], [10, 3, 0], [11, 1, 0], [12, 0, 0]}.
(End)

Crossrefs

There are six related sequences: A026477: 1 <= i < j < k < n starting 1,2,3; A026478: 1 <= i <= j <= k < n starting 1,2,3; A026479: 1 <= i < j < k < n starting 1,2,4; A026480: 1 <= i <= j <= k < n starting 1,2,4; A026481: 1 <= i < j < k < n starting 1,3,4; A026482: 1 <= i <= j <= k < n starting 1,3,4.

Programs

  • Mathematica
    a = {1, 2, 4}; no = {1 2 4};
    Do[x = SelectFirst[Range[Last[a] + 1, 1000], ! MemberQ[no, #] &]; AppendTo[a, x]; no = Union[Times @@@ Tuples[a, {3}]], 60]; a (* Robert Price, May 26 2019 *)

Extensions

Name corrected by Charles R Greathouse IV, Sep 23 2016