A026523 a(n) = T(n, n-3), T given by A026519. Also a(n) = number of integer strings s(0), ..., s(n), counted by T, such that s(n) = 3.
1, 2, 8, 16, 52, 104, 319, 635, 1910, 3786, 11304, 22344, 66514, 131264, 390266, 769578, 2286996, 4508580, 13397075, 26412001, 78489235, 154773696, 460030947, 907432695, 2697786052, 5323519838, 15830906756, 31251588060
Offset: 3
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 3..1000
- Veronika Irvine, Stephen Melczer and Frank Ruskey, Vertically constrained Motzkin-like paths inspired by bobbin lace, arXiv:1804.08725 [math.CO], 2018.
Crossrefs
Programs
-
Mathematica
T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[(n+1)/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k], T[n-1, k-1] + T[n-1, k-2] + T[n-1, k]]]]; (* T = A026519 *) Table[T[n, n-3], {n,3,40}] (* G. C. Greubel, Dec 19 2021 *)
-
Sage
@CachedFunction def T(n,k): # T = A026552 if (k==0 or k==2*n): return 1 elif (k==1 or k==2*n-1): return (n+1)//2 elif (n%2==0): return T(n-1, k) + T(n-1, k-2) else: return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2) [T(n,n-3) for n in (3..40)] # G. C. Greubel, Dec 19 2021
Formula
a(n) = A026519(n, n-3).