A026524 a(n) = T(n, n-4), T given by A026519. Also a(n) = number of integer strings s(0), ..., s(n), counted by T, such that s(n) = 4.
1, 3, 9, 28, 65, 201, 430, 1316, 2721, 8259, 16793, 50680, 102102, 306958, 615024, 1844304, 3682545, 11024331, 21963161, 65675764, 130648089, 390374193, 775797750, 2316881892, 4601346295, 13737041045, 27270124455
Offset: 4
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 4..1000
- Veronika Irvine, Stephen Melczer and Frank Ruskey, Vertically constrained Motzkin-like paths inspired by bobbin lace, arXiv:1804.08725 [math.CO], 2018.
Crossrefs
Programs
-
Mathematica
T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[(n+1)/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k], T[n-1, k-1] + T[n-1, k-2] + T[n-1, k]]]]; (* T = A026519 *) Table[T[n, n-4], {n,4,40}] (* G. C. Greubel, Dec 19 2021 *)
-
Sage
@CachedFunction def T(n,k): # T = A026552 if (k==0 or k==2*n): return 1 elif (k==1 or k==2*n-1): return (n+1)//2 elif (n%2==0): return T(n-1, k) + T(n-1, k-2) else: return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2) [T(n,n-4) for n in (4..40)] # G. C. Greubel, Dec 19 2021
Formula
a(n) = A026519(n, n-4).