A026525 a(n) = T(2*n, n), where T is given by A026519.
1, 1, 5, 16, 65, 251, 1016, 4117, 16913, 69865, 290455, 1212905, 5085224, 21389824, 90226449, 381519416, 1616684241, 6863544233, 29187402749, 124305180842, 530108333515, 2263423401745, 9674857844129, 41396075156859, 177285394355336, 759895396193376, 3259667597627576, 13992851410449865
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Mathematica
T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[(n+1)/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k], T[n-1, k-1] + T[n-1, k-2] + T[n-1, k] ]]]]; (* T = A026519 *) a[n_] := a[n] = Block[{$RecursionLimit = Infinity}, T[2 n, n] ]; Table[a[n], {n, 0, 40}] (* G. C. Greubel, Dec 20 2021 *)
-
Sage
@CachedFunction def T(n,k): # T = A026519 if (k<0 or k>2*n): return 0 elif (k==0 or k==2*n): return 1 elif (k==1 or k==2*n-1): return (n+1)//2 elif (n%2==0): return T(n-1, k) + T(n-1, k-2) else: return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2) [T(2*n, n) for n in (0..40)] # G. C. Greubel, Dec 20 2021
Extensions
Terms a(20) onward added by G. C. Greubel, Dec 20 2021