A026533 a(n) = Sum_{i=0..n} Sum_{j=0..i} T(i,j), T given by A026519.
1, 3, 7, 18, 40, 104, 231, 607, 1353, 3575, 7989, 21169, 47384, 125757, 281798, 748638, 1678832, 4463098, 10014074, 26635050, 59787092, 159078450, 357193976, 950678416, 2135189511, 5684158586, 12769030254, 33999245582
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Mathematica
T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[(n+1)/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k], T[n-1, k-1] + T[n-1, k-2] + T[n-1, k] ]]]]; (* T = A026519 *) a[n_]:= a[n]= Block[{$RecursionLimit = Infinity}, Sum[T[i,j], {i,0,n}, {j,0,i}] ]; Table[a[n], {n, 0, 40}] (* G. C. Greubel, Dec 20 2021 *)
-
Sage
@CachedFunction def T(n,k): # T = A026519 if (k<0 or k>2*n): return 0 elif (k==0 or k==2*n): return 1 elif (k==1 or k==2*n-1): return (n+1)//2 elif (n%2==0): return T(n-1, k) + T(n-1, k-2) else: return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2) @CachedFunction def a(n): return sum(sum( T(i,j) for j in (0..i)) for i in (0..n) ) [a(n) for n in (0..40)] # G. C. Greubel, Dec 20 2021
Formula
a(n) = Sum_{i=0..n} Sum_{j=0..i} A026519(i,j).