A026534 a(n) = Sum_{i=0..2*n} Sum_{j=0..n-1} A026519(j, i).
1, 4, 10, 28, 64, 172, 388, 1036, 2332, 6220, 13996, 37324, 83980, 223948, 503884, 1343692, 3023308, 8062156, 18139852, 48372940, 108839116, 290237644, 653034700, 1741425868, 3918208204, 10448555212, 23509249228, 62691331276
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,6,-6).
Crossrefs
Programs
-
Magma
I:=[1,4,10]; [n le 3 select I[n] else Self(n-1) +6*Self(n-2) -6*Self(n-3): n in [1..40]]; // G. C. Greubel, Dec 20 2021
-
Mathematica
LinearRecurrence[{1,6,-6}, {1,4,10}, 40] (* G. C. Greubel, Dec 20 2021 *)
-
PARI
Vec((1+3*x)/((1-x)*(1-6*x^2))+O(x^99)) \\ Charles R Greathouse IV, Jan 24 2022
-
Sage
@CachedFunction def T(n, k): # T = A026519 if (k<0 or k>2*n): return 0 elif (k==0 or k==2*n): return 1 elif (k==1 or k==2*n-1): return (n+1)//2 elif (n%2==0): return T(n-1, k) + T(n-1, k-2) else: return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2) @CachedFunction def a(n): return sum( sum( T(j,i) for i in (0..2*n) ) for j in (0..n-1) ) [a(n) for n in (1..40)]
Formula
a(n) = Sum_{i=0..2*n} Sum_{j=0..n-1} A026519(j, i).
G.f.: x*(1+3*x)/((1-x)*(1-6*x^2)). - Ralf Stephan, Feb 03 2004
a(n) = (1/60)*( 6^((n+1)/2)*( (4*sqrt(6) - 9)*(-1)^n + (4*sqrt(6) + 9) ) - 48 ). - G. C. Greubel, Dec 20 2021