A026545 a(n) = T(2n-1, n-1), T given by A026536.
1, 1, 6, 19, 79, 306, 1247, 5069, 20889, 86479, 360205, 1506462, 6324176, 26630423, 112439094, 475838291, 2017827545, 8572102713, 36474080228, 155418445421, 663102388605, 2832471934357, 12111891668431, 51841780973922, 222092855692496, 952237575555176, 4085873505697131, 17544024146446621
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..300
Crossrefs
Cf. A026536.
Programs
-
Mathematica
T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n], T[n-1, k-2] +T[n-1, k-1] +T[n-1, k], T[n-1, k-2] +T[n-1, k]] ]]; Table[T[2*n-1, n-1], {n,40}] (* G. C. Greubel, Apr 11 2022 *)
-
SageMath
@CachedFunction def T(n, k): # A026536 if k < 0 or n < 0: return 0 elif k == 0 or k == 2*n: return 1 elif k == 1 or k == 2*n-1: return n//2 elif n % 2 == 1: return T(n-1, k-2) + T(n-1, k) return T(n-1, k-2) + T(n-1, k-1) + T(n-1, k) def A026545(n): return T(2*n-1, n-1) [A026545(n) for n in (1..40)] # G. C. Greubel, Apr 11 2022
Formula
a(n) = A026536(2*n-1, n-1).
Extensions
Terms a(20) onward added by G. C. Greubel, Apr 11 2022