A026560 a(n) = T(2*n, n-2), where T is given by A026552.
1, 4, 18, 74, 311, 1296, 5432, 22796, 95958, 404812, 1711600, 7250970, 30772989, 130810512, 556867224, 2373764416, 10130935783, 43285462884, 185129287262, 792525473552, 3395664830670, 14560682746632, 62482560679368, 268307898599664, 1152883194581155, 4956738399534376, 21323028570642414, 91775945084805898
Offset: 2
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 2..1000
Crossrefs
Programs
-
Mathematica
T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[(n+2)/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k] + T[n-1, k-1], T[n-1, k-2] + T[n-1, k]]]]; (* T=A026552 *) a[n_]:= a[n]= Block[{$RecursionLimit = Infinity}, T[2*n, n-2]]; Table[a[n], {n,2,40}] (* G. C. Greubel, Dec 18 2021 *)
-
Sage
@CachedFunction def T(n,k): # T = A026552 if (k==0 or k==2*n): return 1 elif (k==1 or k==2*n-1): return (n+2)//2 elif (n%2==0): return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2) else: return T(n-1, k) + T(n-1, k-2) [T(2*n,n-2) for n in (2..40)] # G. C. Greubel, Dec 18 2021
Formula
a(n) = A026552(2*n, n-2).
Extensions
Terms a(20) onward from G. C. Greubel, Dec 18 2021