cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026568 Irregular triangular array T read by rows: T(i,0) = T(i,2i) = 1 for i >= 0; T(i,1) = T(i,2i-1) = [ (i+1)/2 ] for i >= 1; and for i >= 2 and 2 <=j <= i - 2, T(i,j) = T(i-1,j-2) + T(i-1,j-1) + T(i-1,j) if i + j is even, T(i,j) = T(i-1,j-2) + T(i-1,j) if i + j is odd.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 4, 5, 4, 2, 1, 1, 2, 7, 7, 13, 7, 7, 2, 1, 1, 3, 8, 16, 20, 27, 20, 16, 8, 3, 1, 1, 3, 12, 19, 44, 43, 67, 43, 44, 19, 12, 3, 1, 1, 4, 13, 34, 56, 106, 111, 153, 111, 106, 56, 34, 13, 4, 1, 1, 4, 18, 38, 103, 140, 273
Offset: 1

Views

Author

Keywords

Comments

T(n, k) = number of strings s(0)..s(n) such that s(0) = 0, s(n) = n - k, |s(i)-s(i-1)| <= 1 if s(i-1) is even, |s(i)-s(i-1)| = 1 if s(i-1) is odd, for 1 <= i <= n.

Examples

			First 5 rows:
  1
  1  1  1
  1  1  3  1  1
  1  2  4  5  4  2  1
  1  2  7  7 13  7  7  2  1
		

Crossrefs

Cf. T(n,n) is A026569.

Programs

  • Mathematica
    z = 12; t[n_, 0] := 1; t[n_, 1] := Floor[(n + 1)/2]; t[n_, k_] := t[n, k] = Which[k == 2 n, 1, k == 2 n - 1, Floor[(n + 1)/2], EvenQ[n + k], t[n - 1, k - 2] + t[n - 1, k - 1] + t[n - 1, k], OddQ[n + k], t[n - 1, k - 2] + t[n - 1, k]]; u = Table[t[n, k], {n, 0, z}, {k, 0, 2 n}];
    TableForm[u] (* A026568 array *)
    Flatten[u]   (* A026568 sequence *)
  • PARI
    T(k,n)=if(n<0||n>2*k,0,if(n==0||n==2*k,1,if(k>0&&(n==1||n==2*k-1),(k+1)\2,T(k-1,n-2)+T(k-1,n)+if((k+n)%2==0,T(k-1,n-1))))) \\ Ralf Stephan

Extensions

Updated by Clark Kimberling, Aug 28 2014