cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A026569 a(n) = T(n,n), T given by A026568. Also a(n) = number of integer strings s(0),...,s(n) counted by T, such that s(n)=0.

Original entry on oeis.org

1, 1, 3, 5, 13, 27, 67, 153, 375, 893, 2189, 5319, 13089, 32155, 79479, 196573, 487833, 1212135, 3018355, 7525585, 18792303, 46980373, 117589689, 294613155, 738844719, 1854484305, 4658460165, 11710592711, 29458662005, 74151824271
Offset: 0

Views

Author

Keywords

Comments

Number of grand Motzkin n-paths avoiding UF. - David Scambler, Jun 20 2013

Examples

			For a(3) = 5 the five grand Motzkin paths are FDU, DFU, FUD, UDF and FFF. The paths containing UF, namely UFD and DUF, are avoided. - _David Scambler_, Jun 20 2013
		

Crossrefs

Cf. A026568.

Programs

  • GAP
    List([0..30], n-> Sum([0..Int(n/2)], k-> Binomial(2*k,k)*Binomial( n-k, k) )); # G. C. Greubel, Aug 03 2019
  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 1/Sqrt((1-x)*(1-x-4*x^2)) )); // G. C. Greubel, Aug 03 2019
    
  • Mathematica
    CoefficientList[Series[Sqrt[1/((1-x)(1-x-4x^2))],{x,0,30}],x] (* Harvey P. Dale, Oct 06 2011 *)
  • PARI
    my(x='x+O('x^30)); Vec( 1/sqrt((1-x)*(1-x-4*x^2)) ) \\ G. C. Greubel, Aug 03 2019
    
  • Sage
    (1/sqrt((1-x)*(1-x-4*x^2))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Aug 03 2019
    

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(2*k, k)*binomial(n-k, k). - Paul Barry, Sep 09 2004
G.f.: sqrt(1/((1-x)*(1-x-4*x^2))). - Ralf Stephan, Jan 08 2004
D-finite with recurrence: a(n) = 1/n*((2*n-1)*a(n-1) + (3*n-3)*a(n-2) - (4*n-6)*a(n-3)). - Vladeta Jovovic, Mar 12 2005
a(n) = Sum_{k=0..n} C(k, n-k)*C(2*(n-k), n-k). - Paul Barry, Jul 30 2005
G.f.: 1/(1-x-2*x^2/(1-0*x-x^2/(1-x-x^2/(1-0*x-2*x^2/(1-x-x^2/.... (continued fraction). Paul Barry, Dec 07 2008
a(n) ~ sqrt((5+13/sqrt(17))/8) * ((1+sqrt(17))/2)^n/sqrt(Pi*n). - Vaclav Kotesovec, Aug 10 2013

A026583 a(n) = Sum{T(i,j)}, 0<=j<=i, 0<=i<=2n, T given by A026568.

Original entry on oeis.org

1, 4, 11, 30, 77, 200, 511, 1314, 3361, 8620, 22067, 56550, 144821, 371024, 950311, 2434410, 6235657, 15973300, 40915931, 104809134, 268472861, 687709400, 1761600847, 4512438450, 11558841841, 29608595644, 75843963011
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A006131, A026581 (first differences).

Programs

  • Mathematica
    LinearRecurrence[{2,3,-4},{1,4,11},40] (* Harvey P. Dale, Apr 03 2024 *)

Formula

G.f.: (1+2x)/[(1-x)(1-x-4x^2)]. - Ralf Stephan, Feb 04 2004 (follows from first comment in A026581)

A026571 a(n) = T(n,n-2), T given by A026568. Also a(n) = number of integer strings s(0), ..., s(n) counted by T, such that s(n) = 2.

Original entry on oeis.org

1, 2, 7, 16, 44, 106, 273, 672, 1696, 4214, 10573, 26392, 66151, 165578, 415277, 1041480, 2615004, 6568450, 16512355, 41531360, 104526093, 263206638, 663143211, 1671581968, 4215574482, 10635988422, 26846320149, 67790042264
Offset: 2

Views

Author

Keywords

Comments

From Ricardo Gómez Aíza, Feb 26 2024: (Start)
The sequence corresponds to the cumulative distribution function of the number of petals in a rooted plane tree with nonempty flowers everywhere but on the root, with flowers made out of petals of size one.
Examples:
a(2)=1 because there is only one element of size 2, and it consists of the root with one descendant with a flower with a single petal attached to it;
a(3)=2 because again there is only one element of size 3 that consists of the root with one descendant with a flower with two petals attached to it;
a(4)=7 because there is one tree with the root and two descendants, each with a flower with one petal only (two petals in total), then there is one tree with the root and one descendant that also has a descendant, and both descendants with a flower with one petal only (two petals in total), and finally there is the tree with the root and one descendant with a flower with three petals. (End)

Programs

  • Mathematica
    CoefficientList[Series[(2*x^2 + x - 1 + (1 - x)*#)/(2*(x^3 - x^2)*#) &[Sqrt[(1 - x - 4*x^2)/(1 - x)]], {x, 0, 29}], x] (* Michael De Vlieger, Mar 03 2024 *)

Formula

Conjecture: (n+2)*a(n) + 3*(-n-1)*a(n-1) - 3*n*a(n-2) + 11*(n-1)*a(n-3) + 2*(n-6)*a(n-4) + 4*(-2*n+7)*a(n-5) = 0. - R. J. Mathar, Jun 23 2013
From Ricardo Gómez Aíza, Feb 26 2024: (Start)
G.f.: (2*x^2+x-1+(1-x)*p(x))/(2*(x^3-x^2)*p(x)) with p(x) = sqrt((1-x-4*x^2)/(1-x)).
a(n) ~ 16*sqrt((9-s)/(s*(s-1)^5*Pi*n))*(8/(s-1))^n where s=sqrt(17). (End)

A026572 a(n) = T(n,n-3), T given by A026568. Also a(n) = number of integer strings s(0),...,s(n) counted by T, such that s(n)=3.

Original entry on oeis.org

1, 2, 8, 19, 56, 140, 376, 953, 2474, 6286, 16097, 40880, 104069, 264052, 670414, 1699831, 4310546, 10924970, 27690075, 70168812, 177820791, 450618964, 1142004584, 2894347667, 7336297080, 18597140982, 47148420564
Offset: 3

Views

Author

Keywords

Comments

Also, a(n) = T(n,n-3), T given by A026584. Also a(n) = number of integer strings s(0),...,s(n) counted by T, such that s(n)=3.

Crossrefs

Formula

Conjectured g.f.: (1/2)*((-3*x^2-x+1)*((x-1)/(4*x^2+x-1))^(1/2)-1+x+x^2)/x^3. - Mark van Hoeij, Oct 30 2011
Conjecture: (n+3)*a(n) +(-3*n-5)*a(n-1) +4*(-n-1)*a(n-2) +(13*n-9)*a(n-3) +(5*n-9)*a(n-4) +6*(-2*n+7)*a(n-5)=0. - R. J. Mathar, Jun 23 2013

A026570 a(n) = A026568(n,n-1), also a(n) = number of integer strings s(0),...,s(n) counted by A026568 such that s(n)=1.

Original entry on oeis.org

1, 1, 4, 7, 20, 43, 111, 259, 648, 1565, 3885, 9533, 23662, 58547, 145630, 362151, 903110, 2253615, 5633359, 14094035, 35304658, 88511733, 222115782, 557819793, 1401987930, 3526066273, 8874034647, 22346581133, 56304982154
Offset: 1

Views

Author

Keywords

Comments

Also a(n) = T'(n,n-1), T' given by A026584. Also a(n) = number of integer strings s(0),...,s(n) counted by T' such that s(n)=1.

Crossrefs

Formula

Conjecture: (n+1)*a(n) -2*n*a(n-1) +(-3*n-1)*a(n-2) +2*(2*n-3)*a(n-3)=0. - R. J. Mathar, Jun 23 2013
If recurrence is correct then a(n) = (A026569(n+1)-A026569(n))/2 = A026585(n+1)/2. - Mark van Hoeij, Nov 29 2024

A026573 a(n)=T(n,n-4), T given by A026568. Also a(n) = number of integer strings s(0),...,s(n) counted by T, such that s(n)=4.

Original entry on oeis.org

1, 3, 12, 34, 103, 281, 778, 2072, 5524, 14488, 37918, 98474, 255137, 658351, 1695542, 4356520, 11177720, 28637452, 73294698, 187412326, 478861373, 1222765699, 3120722598, 7961152560, 20302100415, 51757554237
Offset: 4

Views

Author

Keywords

Formula

Conjecture: -2*(n-4)*(n+4)*a(n) +(5*n^2-5*n-46)*a(n-1) +(4*n^2+n+18)*a(n-2) +(-11*n^2+24*n-16)*a(n-3) +2*(n-2)*(2*n-5)*a(n-4)=0. - R. J. Mathar, Jun 23 2013

A026574 T(2n,n), T given by A026568.

Original entry on oeis.org

1, 1, 7, 19, 103, 341, 1809, 6336, 33899, 121483, 656199, 2381512, 12957809, 47419503, 259395664, 954961034, 5245001951, 19397198595, 106871608053
Offset: 0

Views

Author

Keywords

A026575 T(2n,n-1), T given by A026568.

Original entry on oeis.org

1, 2, 12, 38, 200, 701, 3682, 13294, 70665, 258430, 1388002, 5114572, 27682135, 102539204, 558172494, 2075658454, 11348521989, 42330184638
Offset: 1

Views

Author

Keywords

A026576 T(2n,n-2), T given by A026568.

Original entry on oeis.org

1, 3, 18, 65, 346, 1288, 6818, 25518, 136152, 510532, 2745347, 10309234, 55784794, 209766714, 1140670242, 4294635438, 23445204441
Offset: 2

Views

Author

Keywords

A026577 T(2n-1,n-1), T given by A026568.

Original entry on oeis.org

1, 2, 8, 34, 121, 606, 2155, 11306, 40717, 217666, 792351, 4280046, 15703156, 85410872, 315180458, 1722900242, 6385672193, 35040356022
Offset: 1

Views

Author

Keywords

Showing 1-10 of 24 results. Next