A026590 a(n) = T(2*n, n), where T is given by A026584.
1, 1, 5, 19, 69, 341, 1203, 6336, 22593, 121483, 438533, 2381512, 8677763, 47419503, 173984792, 954961034, 3522101709, 19397198595, 71831252031, 396646918211, 1473610012405, 8154682794333, 30376120747792, 168394714422722, 628648474795879, 3490216221862041, 13053833414221023, 72566287730964469
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Mathematica
T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n+k], T[n-1, k-2] + T[n-1, k], T[n-1, k-2] + T[n-1, k-1] + T[n-1, k] ]]]; (* T = A026584 *) a[n_]:= a[n]= Block[{$RecursionLimit= Infinity}, T[2*n,n]]; Table[a[n], {n, 0, 40}] (* G. C. Greubel, Dec 13 2021 *)
-
Sage
@CachedFunction def T(n, k): # T = A026584 if (k==0 or k==2*n): return 1 elif (k==1 or k==2*n-1): return (n//2) else: return T(n-1, k-2) + T(n-1, k) if ((n+k)%2==0) else T(n-1, k-2) + T(n-1, k-1) + T(n-1, k) [T(2*n, n) for n in (0..40)] # G. C. Greubel, Dec 13 2021
Formula
a(n) = A026584(n, n).
Extensions
Terms a(19) onward from G. C. Greubel, Dec 13 2021