A026592 a(n) = T(2*n, n-2), where T is given by A026584.
1, 3, 14, 65, 251, 1288, 4830, 25518, 95388, 510532, 1910821, 10309234, 38656462, 209766714, 787912030, 4294635438, 16155375825, 88371236851, 332859949946, 1826080683788, 6885797551334, 37867515477338, 142929375411104, 787637258527505, 2975423924172735, 16425495119248041, 62096233990615140, 343318987947145114
Offset: 2
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 2..1000
Crossrefs
Programs
-
Mathematica
T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n+k], T[n-1, k-2] + T[n-1, k], T[n-1, k-2] + T[n-1, k-1] + T[n-1, k] ]]]; (* T = A026584 *) a[n_]:= a[n]= Block[{$RecursionLimit= Infinity}, T[2*n,n-2]]; Table[a[n], {n, 2, 40}] (* G. C. Greubel, Dec 13 2021 *)
-
Sage
@CachedFunction def T(n, k): # T = A026584 if (k==0 or k==2*n): return 1 elif (k==1 or k==2*n-1): return (n//2) else: return T(n-1, k-2) + T(n-1, k) if ((n+k)%2==0) else T(n-1, k-2) + T(n-1, k-1) + T(n-1, k) [T(2*n, n-2) for n in (2..40)] # G. C. Greubel, Dec 13 2021
Formula
a(n) = A026584(2*n, n-2).
Extensions
Terms a(19) onward added by G. C. Greubel, Dec 13 2021