A026596 Row sums of A026584.
1, 1, 4, 8, 23, 54, 143, 354, 914, 2306, 5907, 15012, 38368, 97804, 249865, 637834, 1629729, 4163398, 10640753, 27196246, 69526562, 177757762, 454541197, 1162403180, 2972953385, 7604223184, 19451741733, 49761433640, 127308417226
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Mathematica
T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n+k], T[n-1, k-2] + T[n-1, k], T[n-1, k-2] + T[n-1, k-1] + T[n-1, k] ]]]; (* T = A026584 *) a[n_]:=a[n]= Sum[T[n,k], {k,0,n}]; Table[a[n], {n, 0, 40}] (* G. C. Greubel, Dec 13 2021 *)
-
Sage
@CachedFunction def T(n, k): # T = A026584 if (k==0 or k==2*n): return 1 elif (k==1 or k==2*n-1): return (n//2) else: return T(n-1, k-2) + T(n-1, k) if ((n+k)%2==0) else T(n-1, k-2) + T(n-1, k-1) + T(n-1, k) @CachedFunction def A026596(n): return sum( T(n, j) for j in (0..n) ) [A026596(n) for n in (0..40)] # G. C. Greubel, Dec 13 2021
Formula
a(n) = Sum_{k=0..n} A026584(n, k).
Conjecture: n*a(n) -3*(n-1)*a(n-1) -(5*n-6)*a(n-2) +3*(5*n-13)*a(n-3) +2*(4*n-9)*a(n-4) -8*(2*n-9)*a(n-5) = 0. - R. J. Mathar, Jun 23 2013