A026599 a(n) = Sum_{j=0..2*i, i=0..n} A026584(i,j).
1, 3, 9, 23, 61, 155, 401, 1023, 2629, 6723, 17241, 44135, 113101, 289643, 742049, 1900623, 4868821, 12471315, 31946601, 81831863, 209618269, 536945723, 1375418801, 3523201695, 9024876901, 23117683683, 59217191289, 151687926023
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Amir Sapir, The Tower of Hanoi with Forbidden Moves, The Computer J. 47 (1) (2004) 20, case cyclic++, sequence c(n) (offset 1).
- Index entries for linear recurrences with constant coefficients, signature (2,3,-4).
Crossrefs
Programs
-
Magma
[n le 3 select 3^(n-1) else 2*Self(n-1) +3*Self(n-2) -4*Self(n-3): n in [1..41]]; // G. C. Greubel, Dec 15 2021
-
Mathematica
LinearRecurrence[{2,3,-4}, {1,3,9}, 40] (* G. C. Greubel, Dec 15 2021 *)
-
Sage
[( (1+x)/((1-x)*(1-x-4*x^2)) ).series(x,n+1).list()[n] for n in (0..40)] # G. C. Greubel, Dec 15 2021
Formula
G.f.: (1+x)/((1-x)*(1-x-4*x^2)). - Ralf Stephan, Feb 04 2004
From Klaus Purath, Feb 02 2021: (Start)
a(n) = 2*a(n-1) + 3*a(n-2) - 4*a(n-3).
a(n) = Sum_{j=0..n} A026597(j). (End)
a(n) = 2^n*(Fibonacci(n+2, 1/2) + Fibonacci(n+1, 1/2)) - 1/2. - G. C. Greubel, Dec 15 2021