A026621 a(n) = A026615(n, floor(n/2)).
1, 1, 3, 5, 10, 17, 34, 60, 120, 217, 434, 798, 1596, 2970, 5940, 11154, 22308, 42185, 84370, 160446, 320892, 613054, 1226108, 2351440, 4702880, 9048522, 18097044, 34916300, 69832600, 135059220, 270118440, 523521630, 1047043260, 2033066025, 4066132050, 7908332190
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Magma
I:=[1,3]; [1] cat [n le 2 select I[n] else 2*((49*n^2-287*n+360 )*Self(n-1) + 2*(n-3)*(7*n-8)*(7*n-17)*Self(n-2) )/((n+1)*(7*n-24)*(7*n-15)) : n in [1..40]]; // G. C. Greubel, Jun 13 2024
-
Mathematica
T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[k==1 || k==n-1, 2*n-1, T[n -1,k-1] +T[n-1,k]]]; (* T = A026615 *) Table[T[n, Floor[n/2]], {n,0,40}] (* G. C. Greubel, Jun 13 2024 *)
-
SageMath
@CachedFunction def T(n, k): # T = A026615 if k==0 or k==n: return 1 elif k==1 or k==n-1: return 2*n-1 else: return T(n-1, k-1) + T(n-1, k) def A026621(n): return T(n, int(n//2)) [A026621(n) for n in range(41)] # G. C. Greubel, Jun 13 2024
Formula
a(n) = 2*( (49*n^2 - 287*n + 360)*a(n-1) + 2*(n-3)*(7*n-8)*(7*n-17)*a(n-2) )/((n+1)*(7*n-24)*(7*n-15)) for n > 2. - G. C. Greubel, Jun 13 2024