cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026623 a(n) = Sum_{k=0..floor(n/2)} A026615(n, k).

Original entry on oeis.org

1, 1, 4, 6, 18, 27, 72, 111, 283, 447, 1112, 1791, 4381, 7167, 17305, 28671, 68497, 114687, 271560, 458751, 1077949, 1835007, 4283069, 7340031, 17031503, 29360127, 67768777, 117440511, 269797323, 469762047, 1074583315, 1879048191
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,4,6]; [1] cat [n le 3 select I[n] else ( 2*(7*n-24)*(7*n-29)*(n-1)*Self(n-1) + 4*(7*n-8)*(7*n-31)*(n-3)*Self(n-2) - 8*(7*n-15)*(7*n-24)*(n-4)*Self(n-3) - (147*n^3 - 1603*n^2 + 5896*n - 7152))/(n*(7*n-31)*(7*n-22)): n in [1..41]]; // G. C. Greubel, Jun 15 2024
    
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[k==1 || k==n-1, 2*n-1, T[n -1, k-1] + T[n-1,k]]]; (* T = A026615 *)
    A026623[n_]:= Sum[T[n, k], {k, 0, Floor[n/2]}];
    Table[A026623[n], {n,0,40}] (* G. C. Greubel, Jun 15 2024 *)
  • SageMath
    @CachedFunction
    def T(n, k): # T = A026615
        if k==0 or k==n: return 1
        elif k==1 or k==n-1: return 2*n-1
        else: return T(n-1, k-1) + T(n-1, k)
    def A026623(n): return sum(T(n,k) for k in range((n//2)+1))
    [A026623(n) for n in range(41)] # G. C. Greubel, Jun 15 2024

Formula

a(n) = ( 2*(7*n-24)*(7*n-29)*(n-1)*a(n-1) + 4*(7*n-8)*(7*n-31)*(n-3)*a(n-2) - 8*(7*n-15)*(7*n-24)*(n-4)*a(n-3) - (147*n^3 - 1603*n^2 + 5896*n - 7152))/(n*(7*n-31)*(7*n-22)), for n > 3, with a(0) = a(1) = 1, a(2) = 4, and a(3) = 6. - G. C. Greubel, Jun 15 2024