cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026626 Triangular array T read by rows: T(n,0) = T(n,n) = 1 for n >= 0, T(n,1) = T(n,n-1) = floor(3*n/2) for n >= 1, T(n,k) = T(n-1,k-1) + T(n-1,k) for 2 <= k <= n-2, n >= 4.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 4, 4, 1, 1, 6, 8, 6, 1, 1, 7, 14, 14, 7, 1, 1, 9, 21, 28, 21, 9, 1, 1, 10, 30, 49, 49, 30, 10, 1, 1, 12, 40, 79, 98, 79, 40, 12, 1, 1, 13, 52, 119, 177, 177, 119, 52, 13, 1, 1, 15, 65, 171, 296, 354, 296, 171, 65, 15, 1, 1, 16, 80, 236, 467, 650, 650, 467, 236, 80, 16, 1
Offset: 0

Views

Author

Keywords

Examples

			Triangle begins as:
  1;
  1,  1;
  1,  3,  1;
  1,  4,  4,   1;
  1,  6,  8,   6,   1;
  1,  7, 14,  14,   7,   1;
  1,  9, 21,  28,  21,   9,   1;
  1, 10, 30,  49,  49,  30,  10,   1;
  1, 12, 40,  79,  98,  79,  40,  12,   1;
  1, 13, 52, 119, 177, 177, 119,  52,  13,   1;
  1, 15, 65, 171, 296, 354, 296, 171,  65,  15,  1;
		

Crossrefs

Programs

  • Magma
    function T(n,k) // T = A026626
      if k eq 0 or k eq n then return 1;
      elif k eq 1 or k eq n-1 then return Floor(3*n/2);
      else return T(n-1,k-1) + T(n-1,k);
      end if;
    end function;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 19 2024
    
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[k==1 || k==n-1, (6*n-1+(-1)^n)/4, T[n-1, k-1] + T[n-1, k] ]];
    Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 19 2024 *)
  • SageMath
    def T(n,k): # T = A026626
        if (k==0 or k==n): return 1
        elif (k==1 or k==n-1): return int(3*n//2)
        else: return T(n-1,k-1) + T(n-1,k)
    flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jun 19 2024

Formula

T(n, k) = number of paths from (0, 0) to (n-k, k) in the directed graph having vertices (i, j) and edges (i, j)-to-(i+1, j) and (i, j)-to-(i, j+1) for i, j >= 0 and edges (i, j)-to-(i+1, j+1) for i=0, j >= 0 and even and for j=0, i >= 0 and even.
From G. C. Greubel, Jun 19 2024: (Start)
T(n, n-k) = T(n, k)
T(n, 1) = (-1)^n*A084056(n) = A032766(n), n >= 1.
T(n, 2) = A006578(n-1), n >= 2.
T(n, 3) = (1/16)*(4*n^3 - 14*n^2 + 12*n + 15 + (-1)^n) - [n=3] , n >= 3.
Sum_{k=0..n} (-1)^k*T(n, k) = A176742(n) + [n=2].
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = (1/4)*((-1)^n*(8/sqrt(3)* sin(2*(n+1)*Pi/3) - 2*cos(n*Pi/2) + 1) - 3) + [n<2].
Sum_{k=0..n} k*T(n, k) = (1/6)*n*(17*2^(n-2) - 2 - (1-(-1)^n)) + (1/4)*[n=1]. (End)