cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026627 a(n) = A026626(2*n, n).

Original entry on oeis.org

1, 3, 8, 28, 98, 354, 1300, 4834, 18142, 68578, 260720, 995856, 3818644, 14690940, 56677652, 219195454, 849523318, 3298629106, 12829651312, 49973834584, 194917940188, 761178474076, 2975764881352, 11645184195364
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 2 select 2*n-1 else ((357*n^3-2696*n^2+6441*n-4822)*Self(n-1) +2*(2*n-7)*(51*n^2-203*n+188)*Self(n-2))/(2*(n-1)*(51*n^2-305*n+442)): n in [1..41]]; // G. C. Greubel, Jun 19 2024
    
  • Mathematica
    a[n_]:= a[n]= If[n<2, 2*n+1, ((357*n^3 -1625*n^2 +2120*n -720)*a[n-1] +2*(2*n-5)*(51*n^2 -101*n +36)*a[n-2])/(2*n*(51*n^2-203*n+188))];
    Table[a[n], {n,0,40}] (* G. C. Greubel, Jun 19 2024 *)
  • SageMath
    @CachedFunction
    def a(n): # a = A026627
        if n<2: return 2*n+1
        else: return ((357*n^3 -1625*n^2 +2120*n -720)*a(n-1) +2*(2*n-5)*(51*n^2 -101*n +36)*a(n-2))/(2*n*(51*n^2 -203*n +188))
    [a(n) for n in range(41)] # G. C. Greubel, Jun 19 2024

Formula

a(n) = ( (357*n^3 - 1625*n^2 + 2120*n - 720)*a(n-1) + 2*(2*n-5)*(51*n^2 - 101*n + 36)*a(n-2) )/(2*n*(51*n^2 - 203*n + 188)), for n >= 2, with a(0) = 1, a(1) = 3.