cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026632 a(n) = A026626(n, floor(n/2)).

Original entry on oeis.org

1, 1, 3, 4, 8, 14, 28, 49, 98, 177, 354, 650, 1300, 2417, 4834, 9071, 18142, 34289, 68578, 130360, 260720, 497928, 995856, 1909322, 3818644, 7345470, 14690940, 28338826, 56677652, 109597727, 219195454, 424761659, 849523318
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [1] cat [n le 4 select Fibonacci(n+2) -(1-(-1)^n)/2 else (4*(867*n^4 - 11934*n^3 +58705*n^2 -123374*n +95280)*Self(n-1) +(6069*n^5 - 91817*n^4 +525005*n^3 -1404375*n^2 +1742414*n -803760)*Self(n-2) +2*(867*n^4 -11934*n^3 +58705*n^2 -123374*n +95280)*Self(n-3) +4*(n-5)*(867*n^4 -8534*n^3 +28921*n^2 -39246*n +17712)*Self(n-4))/(2*(n+1)*(867*n^4 -12002*n^3 +59725*n^2 -126158*n +95280)): n in [1..40]]; // G. C. Greubel, Jun 20 2024
    
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[k==1 || k==n-1, (6*n-1 + (-1)^n)/4, T[n-1,k-1] +T[n-1,k]]];
    Table[T[n, Floor[n/2]], {n,0,40}] (* G. C. Greubel, Jun 20 2024 *)
  • SageMath
    @CachedFunction
    def T(n, k): # T = A026626
        if (k==0 or k==n): return 1
        elif (k==1 or k==n-1): return int(3*n//2)
        else: return T(n-1, k-1) + T(n-1, k)
    [T(n,int(n//2)) for n in range(41)] # G. C. Greubel, Jun 20 2024

Formula

a(n) = (4*(867*n^4 -11934*n^3 +58705*n^2 -123374*n +95280)*a(n-1) +(6069*n^5 -91817*n^4 + 525005*n^3 -1404375*n^2 +1742414*n -803760 )*a(n-2) +2*(867*n^4 - 11934*n^3 +58705*n^2 -123374*n +95280)*a(n-3) + 4*(n-5)*(867*n^4 - 8534*n^3 +28921*n^2 -39246*n +17712)*a(n-4))/(2*(n+1)*(867*n^4 - 12002*n^3 +59725*n^2 -126158*n +95280)), for n >= 6, with a(0) = a(1) = 1, a(2) = 3, a(3) = 4, and a(4) = 8. - G. C. Greubel, Jun 20 2024