cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026634 a(n) = Sum_{k=0..floor(n/2)} A026626(n, k).

Original entry on oeis.org

1, 1, 4, 5, 15, 22, 59, 90, 230, 362, 902, 1450, 3551, 5802, 14022, 23210, 55492, 92842, 219974, 371370, 873101, 1485482, 3468893, 5941930, 13793183, 23767722, 54880915, 95070890, 218480607, 380283562, 870164852, 1521134250
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    b:= func< n | n le 2 select 2*n-1 else ((357*n^3-2696*n^2+6441*n-4822)*Self(n-1) +2*(2*n-7)*(51*n^2-203*n+188)*Self(n-2))/(2*(n-1)*(51*n^2-305*n+442)) >;
    A026627:= [b(n+1) : n in [0..60]];
    A026633:= [n le 1 select n+1 else (17*2^(n-2) +(-1)^n)/3 -1: n in [0..60]];
    function A026634(n)
      if (n mod 2) eq 1 then return Floor(A026633[n+1]/2);
      else return Floor( (2*A026633[n+1] + (1+(-1)^n)*A026627[Floor(n/2) +1])/4);
      end if;
    end function;
    [A026634(n): n in [0..60]]; // G. C. Greubel, Jun 21 2024
    
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[k==1 || k==n-1, (6*n-1 + (-1)^n)/4, T[n-1,k-1] +T[n-1,k]]];
    A026634[n_]:= Sum[T[n,k], {k,0,n}];
    Table[A026634[n], {n,0,40}] (* G. C. Greubel, Jun 21 2024 *)
  • SageMath
    @CachedFunction
    def T(n, k): # T = A026626
        if (k==0 or k==n): return 1
        elif (k==1 or k==n-1): return int(3*n//2)
        else: return T(n-1, k-1) + T(n-1, k)
    def A026634(n): return sum(T(n,k) for k in range((n//2)+1))
    [A026634(n) for n in range(41)] # G. C. Greubel, Jun 21 2024

Formula

a(n) = floor(A026633(n)/2) if (n mod 2) = 1 and a(n) = floor((2*A026633(n) + (1+(-1)^n)*A026627(floor(n/2)+1))/4) if (n mod 2) = 0. - G. C. Greubel, Jun 21 2024