cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026638 a(n) = A026637(2*n, n).

Original entry on oeis.org

1, 2, 8, 26, 92, 332, 1220, 4538, 17036, 64412, 244928, 935684, 3588392, 13806704, 53271548, 206040506, 798600332, 3101109164, 12062148368, 46986821516, 183276382472, 715748620424, 2798274135368, 10951009023716, 42895901012792, 168167959150232, 659793819847040
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [1] cat [n le 2 select 2^(2*n-1) else ((7*n-4)*Self(n-1) + 2*(2*n-1)*Self(n-2))/(2*n): n in [1..40]]; // G. C. Greubel, Jul 01 2024
    
  • Mathematica
    CoefficientList[Series[1/(2+x)+3/((2+x)*Sqrt[1-4*x])-1,{x,0,20}],x] (* Vaclav Kotesovec, Oct 21 2012 *)
  • PARI
    my(x='x+O('x^66)); Vec( 1/(2+x)+3/((2+x)*sqrt(1-4*x))-1 ) \\ Joerg Arndt, May 04 2013
    
  • SageMath
    @CachedFunction
    def a(n): # a = A026638
        if n<3: return 2^(n*(n+1)/2)
        else: return ((7*n-4)*a(n-1) + 2*(2*n-1)*a(n-2))/(2*n)
    [a(n) for n in range(41)] # G. C. Greubel, Jul 01 2024

Formula

From Vaclav Kotesovec, Oct 21 2012: (Start)
G.f.: (3 - (x+1)*sqrt(1-4*x))/((x+2)*sqrt(1-4*x)).
Recurrence: 2*n*a(n) = (7*n-4)*a(n-1) + 2*(2*n-1)*a(n-2).
a(n) ~ 2^(2*n+2)/(3*sqrt(Pi*n)) (End)