A026645 a(n) = Sum_{k=0..floor(n/2)} A026637(n, k).
1, 1, 3, 5, 14, 21, 55, 85, 216, 341, 848, 1365, 3340, 5461, 13191, 21845, 52208, 87381, 206968, 349525, 821514, 1398101, 3264044, 5592405, 12979006, 22369621, 51642594, 89478485, 205592744, 357913941, 818848135, 1431655765, 3262611696, 5726623061, 13003800704, 22906492245
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Mathematica
T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[k==1 || k==n-1, Floor[(3*n- 1)/2], T[n-1,k] + T[n-1,k-1] ]]; A026645[n_]:= Sum[T[n, k], {k, 0, Floor[n/2]}]; Table[A026645[n], {n,0,40}] (* G. C. Greubel, Jun 29 2024 *)
-
SageMath
@CachedFunction def T(n,k): # T = A026637 if k==0 or k==n: return 1 elif k==1 or k==n-1: return ((3*n-1)//2) else: return T(n-1, k) + T(n-1, k-1) def A026645(n): return sum(T(n,k) for k in range((n//2)+1)) [A026645(n) for n in range(41)] # G. C. Greubel, Jun 29 2024