A026670 Triangular array T read by rows: T(n,0) = T(n,n) = 1 for n >= 0; for n >= 1, T(n,1) = T(n,n-1) = n+1; for n >= 2, T(n,k) = T(n-1,k-1) + T(n-2,k-1) + T(n-1,k) if n is even and k = n/2, else T(n,k) = T(n-1,k-1) + T(n-1,k).
1, 1, 1, 1, 3, 1, 1, 4, 4, 1, 1, 5, 11, 5, 1, 1, 6, 16, 16, 6, 1, 1, 7, 22, 43, 22, 7, 1, 1, 8, 29, 65, 65, 29, 8, 1, 1, 9, 37, 94, 173, 94, 37, 9, 1, 1, 10, 46, 131, 267, 267, 131, 46, 10, 1, 1, 11, 56, 177, 398, 707, 398, 177, 56, 11, 1, 1, 12, 67
Offset: 0
Examples
E.g., 11 = T(4, 2) = T(3, 1) + T(2, 2) + T(3, 2) = 4 + 3 + 4. Triangle begins: 1 1 1 1 3 1 1 4 4 1 1 5 11 5 1 1 6 16 16 6 1 1 7 22 43 22 7 1 1 8 29 65 65 29 8 1 1 9 37 94 173 94 37 9 1 1 10 46 131 267 267 131 46 10 1 1 11 56 177 398 707 398 177 56 11 1 1 12 67 233 575 1105 1105 575 233 67 12 1 ... - _Philippe Deléham_, Feb 02 2014
Links
- Rob Arthan, Comments on A026674, A026725, A026670
Crossrefs
Cf. A026674.
Formula
T(n, k) = number of paths from (0, 0) to (n-k, k) in the directed graph having vertices (i, j) and edges (i, j)-to-(i+1, j) and (i, j)-to-(i, j+1) for i, j >= 0 and edges (i, j)-to-(i+1, j+1) for i=j.
Extensions
Formula corrected by David Perkinson (davidp(AT)reed.edu), Sep 19 2001 and also by Rob Arthan, Jan 16 2003
Typo in name corrected by Sean A. Irvine, Oct 09 2019
Offset corrected by R. J. Mathar and Sean A. Irvine, Oct 25 2019