cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026673 a(n) = T(2n,n-2), T given by A026670.

Original entry on oeis.org

1, 7, 37, 177, 808, 3596, 15764, 68446, 295294, 1268356, 5430734, 23199304, 98933705, 421352919, 1792709561, 7621345733, 32380443643, 137504761035, 583684770103, 2476836131227, 10507517431481, 44566369523517, 188988331406117
Offset: 2

Views

Author

Keywords

Comments

Also a(n) = T(2n,n-2) = T(2n+1,n+2), T given by A026725.
Also a(n) = T(2n,n-2), T given by A026736.
Column k=6 of triangle A236830. - Philippe Deléham, Feb 02 2014

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(  (1-Sqrt(1-4*x))^6/(8*x^2*(8*x^2 -(1-Sqrt(1-4*x))^3)) )); // G. C. Greubel, Jul 16 2019
    
  • Mathematica
    Drop[CoefficientList[Series[(1-Sqrt[1-4*x])^6/(8*x^2*(8*x^2-(1-Sqrt[1 - 4*x])^3)), {x,0,30}], x], 2] (* G. C. Greubel, Jul 16 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec( (1-sqrt(1-4*x))^6/(8*x^2*(8*x^2 -(1-sqrt(1-4*x))^3))) \\ G. C. Greubel, Jul 16 2019
    
  • Sage
    a=((1-sqrt(1-4*x))^6/(8*x^2*(8*x^2 -(1-sqrt(1-4*x))^3))).series(x, 30).coefficients(x, sparse=False); a[2:] # G. C. Greubel, Jul 16 2019

Formula

G.f.: (x^2*C(x)^6)/(1-x*C(x)^3) where C(x) is the g.f. of A000108. - Philippe Deléham, Feb 02 2014
-(n+2)*(3*n-7)*a(n) +2*(12*n^2-19*n-16)*a(n-1) +5*(-9*n^2+27*n-22)*a(n-2) -2*(3*n-4)*(2*n-3)*a(n-3)=0. - R. J. Mathar, Oct 26 2019