cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026676 a(n) = T(n, floor(n/2)), T given by A026670.

Original entry on oeis.org

1, 1, 3, 4, 11, 16, 43, 65, 173, 267, 707, 1105, 2917, 4597, 12111, 19196, 50503, 80380, 211263, 337284, 885831, 1417582, 3720995, 5965622, 15652239, 25130844, 65913927, 105954110, 277822147, 447015744, 1171853635, 1886996681
Offset: 0

Views

Author

Keywords

Comments

Also a(n) = T(n,m) + T(n,m+1) + ... + T(n,n), m=[ (n+1)/2 ], T given by A026736.

Crossrefs

Programs

  • GAP
    T:= function(n, k)
        if k=0 or k=n then return 1;
        elif k=n-1 then return n;
        elif (n mod 2)=0 and k=Int((n-2)/2) then return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k);
        else return T(n-1, k-1) + T(n-1, k);
        fi;
      end;
    List([0..20], n-> Sum([Int((n+1)/2)..n], k-> T(n, k) )); # G. C. Greubel, Jul 19 2019
  • Mathematica
    T[n_, k_]:= T[n, k] = If[k==0 || k==n, 1, If[k==n-1, n, If[EvenQ[n] && k==(n-2)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k]]]]; Table[Sum[T[n, k], {k, Floor[(n+1)/2], n}], {n, 0, 40}] (* G. C. Greubel, Jul 19 2019 *)
  • PARI
    T(n, k) = if(k==n || k==0, 1, k==n-1, n, if((n%2)==0 && k==(n-2)/2, T(n-1, k-1) + T(n-2, k-1) + T(n-1, k), T(n-1, k-1) + T(n-1, k) ));
    vector(20, n, n--; sum(k=(n+1)\2, n, T(n, k)) ) \\ G. C. Greubel, Jul 19 2019
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==0 or k==n): return 1
        elif (k==n-1): return n
        elif (mod(n, 2)==0 and k==(n-2)/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k)
        else: return T(n-1, k-1) + T(n-1, k)
    [sum(T(n,k) for k in (floor((n+1)/2)..n)) for n in (0..40)] # G. C. Greubel, Jul 19 2019