A026676 a(n) = T(n, floor(n/2)), T given by A026670.
1, 1, 3, 4, 11, 16, 43, 65, 173, 267, 707, 1105, 2917, 4597, 12111, 19196, 50503, 80380, 211263, 337284, 885831, 1417582, 3720995, 5965622, 15652239, 25130844, 65913927, 105954110, 277822147, 447015744, 1171853635, 1886996681
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
GAP
T:= function(n, k) if k=0 or k=n then return 1; elif k=n-1 then return n; elif (n mod 2)=0 and k=Int((n-2)/2) then return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k); else return T(n-1, k-1) + T(n-1, k); fi; end; List([0..20], n-> Sum([Int((n+1)/2)..n], k-> T(n, k) )); # G. C. Greubel, Jul 19 2019
-
Mathematica
T[n_, k_]:= T[n, k] = If[k==0 || k==n, 1, If[k==n-1, n, If[EvenQ[n] && k==(n-2)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k]]]]; Table[Sum[T[n, k], {k, Floor[(n+1)/2], n}], {n, 0, 40}] (* G. C. Greubel, Jul 19 2019 *)
-
PARI
T(n, k) = if(k==n || k==0, 1, k==n-1, n, if((n%2)==0 && k==(n-2)/2, T(n-1, k-1) + T(n-2, k-1) + T(n-1, k), T(n-1, k-1) + T(n-1, k) )); vector(20, n, n--; sum(k=(n+1)\2, n, T(n, k)) ) \\ G. C. Greubel, Jul 19 2019
-
Sage
@CachedFunction def T(n, k): if (k==0 or k==n): return 1 elif (k==n-1): return n elif (mod(n, 2)==0 and k==(n-2)/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k) else: return T(n-1, k-1) + T(n-1, k) [sum(T(n,k) for k in (floor((n+1)/2)..n)) for n in (0..40)] # G. C. Greubel, Jul 19 2019
Comments