cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026726 a(n) = T(2n,n), T given by A026725.

Original entry on oeis.org

1, 2, 7, 27, 108, 440, 1812, 7514, 31307, 130883, 548547, 2303413, 9686617, 40783083, 171868037, 724837891, 3058850316, 12915186640, 54554594416, 230526280814, 974414815782, 4119854160332, 17422801069670, 73695109608352, 311768697325788, 1319136935150530
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    List([0..30], n-> Sum([0..n], k-> (2*k+1)*Binomial(2*n,n-k)*
    Fibonacci(k+1)/(n+k+1) )); # G. C. Greubel, Jul 16 2019
  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 4*x*(1-Sqrt(1-4*x))/(8*x^2-(1-Sqrt(1-4*x))^3) )); // G. C. Greubel, Jul 16 2019
    
  • Maple
    A026726 := proc(n)
        A026725(2*n,n) ;
    end proc:
    seq(A026726(n),n=0..10) ; # R. J. Mathar, Oct 26 2019
  • Mathematica
    CoefficientList[Series[4*x*(1-Sqrt[1-4*x])/(8*x^2-(1-Sqrt[1-4*x])^3), {x,0,30}], x] (* G. C. Greubel, Jul 16 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec(4*x*(1-sqrt(1-4*x))/(8*x^2-(1-sqrt(1-4*x))^3)) \\ G. C. Greubel, Jul 16 2019
    
  • Sage
    (4*x*(1-sqrt(1-4*x))/(8*x^2-(1-sqrt(1-4*x))^3)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jul 16 2019
    

Formula

From Philippe Deléham, Feb 11 2009: (Start)
a(n) = Sum_{k=0..n} A039599(n,k)*A000045(k+1).
a(n) = Sum_{k=0..n} A106566(n,k)*A122367(k). (End)
From Philippe Deléham, Feb 02 2014: (Start)
a(n) = Sum_{k=0..n} A236843(n+k,2*k).
a(n) = Sum_{k=0..n} A236830(n,k).
a(n) = A236830(n+1,1).
a(n) = A165407(3*n).
G.f.: C(x)/(1-x*C(x)^3), C(x) the g.f. of A000108. (End)
n*(5*n-11)*a(n) +2*(-20*n^2+59*n-30)*a(n-1) +15*(5*n^2-19*n+16)*a(n-2) +2*(5*n-6)*(2*n-5)*a(n-3)=0. - R. J. Mathar, Oct 26 2019
n*a(n) +(-7*n+4)*a(n-1) +(7*n-2)*a(n-2) +(19*n-60)*a(n-3) +2*(2*n-7)*a(n-4)=0. - R. J. Mathar, Oct 26 2019